scholarly journals Thermal stability of imidazolium-based ionic liquids

2016 ◽  
Vol 4 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Léa Chancelier ◽  
Olivier Boyron ◽  
Thibaut Gutel ◽  
Catherine Santini

This work highlights the factors tuning the thermal stability of imidazolium-based ionic liquids (IL) associated to bis(trifluoromethanesulfonyl)imide anion [NTf2]. The decomposition temperatures (Td) were evaluated by thermogravimetric analyses (TGA) with optimized parameters to obtain reproducible Td. The impact of the alkyl chain length and of the presence of functional groups and unsaturations on Td were evaluated. The thermal behaviour was governed by Van der Waals interactions between alkyl chains, and by inter and intra coulombic interactions such as hydrogen bonds.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4972
Author(s):  
Jule Philipp ◽  
Ralf Ludwig

We explore quantum chemical calculations for studying clusters of hydroxyl-functionalized cations kinetically stabilized by hydrogen bonding despite strongly repulsive electrostatic forces. In a comprehensive study, we calculate clusters of ammonium, piperidinium, pyrrolidinium, imidazolium, pyridinium, and imidazolium cations, which are prominent constituents of ionic liquids. All cations are decorated with hydroxy-alkyl chains allowing H-bond formation between ions of like charge. The cluster topologies comprise linear and cyclic clusters up to the size of hexamers. The ring structures exhibit cooperative hydrogen bonds opposing the repulsive Coulomb forces and leading to kinetic stability of the clusters. We discuss the importance of hydrogen bonding and dispersion forces for the stability of the differently sized clusters. We find the largest clusters when hydrogen bonding is maximized in cyclic topologies and dispersion interaction is properly taken into account. The kinetic stability of the clusters with short-chained cations is studied for the different types of cations ranging from hard to polarizable or exhibiting additional functional groups such as the acidic C(2)-H position in the imidazolium-based cation. Increasing the alkyl chain length, the cation effect diminishes and the kinetic stability is exclusively governed by the alkyl chain tether increasing the distance between the positively charged rings of the cations. With adding the counterion tetrafluoroborate (BF4−) to the cationic clusters, the binding energies immediately switch from strongly positive to strongly negative. In the neutral clusters, the OH functional groups of the cations can interact either with other cations or with the anions. The hexamer cluster with the cyclic H-bond motive and “released” anions is almost as stable as the hexamer built by H-bonded ion pairs exclusively, which is in accord with recent IR spectra of similar ionic liquids detecting both types of hydrogen bonding. For the cationic and neutral clusters, we discuss geometric and spectroscopic properties as sensitive probes of opposite- and like-charge interaction. Finally, we show that NMR proton chemical shifts and deuteron quadrupole coupling constants can be related to each other, allowing to predict properties which are not easily accessible by experiment.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 27370-27377 ◽  
Author(s):  
Panpan Sun ◽  
Lijuan Shi ◽  
Fei Lu ◽  
Liqiang Zheng

The effects of anionic type, cationic structure and alkyl chain length are illustrated to regulate the self-assembly of zwitterionic SAILs.


2014 ◽  
Vol 16 (48) ◽  
pp. 26798-26805 ◽  
Author(s):  
Andrei Filippov ◽  
Mamoun Taher ◽  
Faiz Ullah Shah ◽  
Sergei Glavatskih ◽  
Oleg N. Antzutkin

Diffusion behaviour and non-linear dependence of density of [CnC1Pyrr][BMB] ionic liquids on the number of CH2 groups in the long alkyl chains of the cations were described using an additive model, in which ‘ionic’ and ‘aliphatic’ regions make additive contributions.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Priscila Vedovello ◽  
Ana Catarina de Oliveira Gomes ◽  
Lucas Mendonça da Rocha Oliveira ◽  
Sandra Andrea Cruz ◽  
Caio Marcio Paranhos

Abstract The most common polymeric nanocomposites are constituted of organically-modified clays. Generally, these organic modifiers are based on quaternary ammonium salts. These systems have as disadvantage the low thermal resistance of its modifiers under processing. Ionic liquids (IL) with different molecular structures can be used as organic modifier in lamellar clays-based polymeric nanocomposites, being promising not only to increase interactions between the nanoclay and the matrix, but also to increase the thermal resistance. In this study, polypropylene-based/montmorillonite nanocomposites were compared from two different organic modifiers. The use of short alkyl chain length imidazolium-based IL as montmorillonite modifier was investigated in terms of the thermal stability when compared to the usual quaternary ammonium salt surfactant. Integral procedure decomposition temperature was employed to determine the effect of these two different organoclay modifiers in PP-nanocomposites. The activation energy for these samples was calculated using Flynn–Wall–Ozawa (FWO) method. It was also used the multiple linear regression analysis to calculate the activation energy in order to evaluate the accuracy of this method when applied to nanocomposites. Article Highlights Short length alkyl group in ionic liquid was able to improve the thermal stability of PP-based nanocomposite. IPDT methodology is more realistic to evaluate the thermal stability of ionic liquid-based nanocomposite. MLR methodology was efficient to assess the entropic contribution associated to polymer-clay interactions, inter-lamellae spaces and interface morphology.


2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


2013 ◽  
Vol 25 (8) ◽  
pp. 4779-4782 ◽  
Author(s):  
W.D. Liang ◽  
H.F. Li ◽  
G.J. Gou ◽  
A.Q. Wang

2012 ◽  
Vol 116 (11) ◽  
pp. 3512-3518 ◽  
Author(s):  
Enrico Binetti ◽  
Annamaria Panniello ◽  
Leonardo Triggiani ◽  
Raffaele Tommasi ◽  
Angela Agostiano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document