scholarly journals SafeOne Machine Learning model to predict industrial incidents in Chemical and Gas Industries

Author(s):  
Ganapathy Subramaniam Balasubramanian, Et. al.

Understanding activity incidents is one of the necessary measures in workplace safety strategy. Analyzing the trends of the activity incident information helps to spot the potential pain points and helps to scale back the loss. Optimizing the Machine Learning algorithms may be a comparatively new trend to suit the prediction model and algorithms within the right place to support human helpful factors. This research aims to make a prediction model spot the activity incidents in chemical and gas industries. This paper describes the design and approach of building and implementing the prediction model to predict the reason behind the incident which may be used as a key index for achieving industrial safety specific to chemical and gas industries. The implementation of the grading algorithmic program including the prediction model ought to bring unbiased information to get a logical conclusion. The prediction model has been trained against incident information that has 25700 chemical industrial incidents with accident descriptions for the last decade. Inspection information and incident logs ought to be chomped high of the trained dataset to verify and validate the implementation. The result of the implementation provides insight towards the understanding of the patterns, classifications, associated conjointly contributes to an increased understanding of quantitative and qualitative analytics. Innovative cloud-based technology discloses the gate to method the continual in-streaming information, method it, and output the required end in a period. The first technology stack utilized in this design is Apache Kafka, Apache Spark, KSQL, Data frames, and AWS Lambda functions. Lambda functions are accustomed implement the grading algorithmic program and prediction algorithmic program to put in writing out the results back to AWS S3 buckets. Proof of conception implementation of the prediction model helps the industries to examine through the incidents and can layout the bottom platform for the assorted protective implementations that continuously advantage the workplace's name, growth, and have less attrition in human resources.

2019 ◽  
Vol 8 (4) ◽  
pp. 3836-3840

Understanding occupational incidents is one of the important measures in workplace safety strategy. Analyzing the trends of the occupational incident data helps to identify the potential pain points and helps to reduce the loss. Optimizing the Machine Learning algorithms is a relatively new trend to fit the prediction model and algorithms in the right place to support human beneficial factors. The aim of this research is to build a prediction model to identify the occupational incidents in chemical and gas industries. This paper describes the architecture and approach of building and implementing the prediction model to predict the cause of the incident which can be used as a key index for achieving industrial safety in specific to chemical and gas industries. The implementation of the scoring algorithm coupled with prediction model should bring unbiased data to obtain logical conclusion. The prediction model has been trained against FACTS (Failure and Accidents Technical information system) is an incidents database which have 25,700 chemical industrial incidents with accident descriptions for the years span from 2004 to 2014. Inspection data and sensor logs should be fed on top of the trained dataset to verify and validate the implementation. The outcome of the implementation provides insight towards the understanding of the patterns, classifications, and also contributes to an enhanced understanding of quantitative and qualitative analytics. Cutting edge cloud-based technology opens up the gate to process the continuous in-streaming data, process it and output the desired result in real-time. The primary technology stack used in this architecture is Apache Kafka, Apache Spark Streaming, KSQL, Data frames, and AWS Lambda functions. Lambda functions are used to implement the scoring algorithm and prediction algorithm to write out the results back to AWS S3 buckets. Proof of concept implementation of the prediction model helps the industries to see through the incidents and will layout the base platform for the various safety-related implementations which always benefits the workplace's reputation, growth, and have less attrition in human resources.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lingxiao He ◽  
Lei Luo ◽  
Xiaoling Hou ◽  
Dengbin Liao ◽  
Ran Liu ◽  
...  

Abstract Background Venous thromboembolism (VTE) is a common complication of hospitalized trauma patients and has an adverse impact on patient outcomes. However, there is still a lack of appropriate tools for effectively predicting VTE for trauma patients. We try to verify the accuracy of the Caprini score for predicting VTE in trauma patients, and further improve the prediction through machine learning algorithms. Methods We retrospectively reviewed emergency trauma patients who were admitted to a trauma center in a tertiary hospital from September 2019 to March 2020. The data in the patient’s electronic health record (EHR) and the Caprini score were extracted, combined with multiple feature screening methods and the random forest (RF) algorithm to constructs the VTE prediction model, and compares the prediction performance of (1) using only Caprini score; (2) using EHR data to build a machine learning model; (3) using EHR data and Caprini score to build a machine learning model. True Positive Rate (TPR), False Positive Rate (FPR), Area Under Curve (AUC), accuracy, and precision were reported. Results The Caprini score shows a good VTE prediction effect on the trauma hospitalized population when the cut-off point is 11 (TPR = 0.667, FPR = 0.227, AUC = 0.773), The best prediction model is LASSO+RF model combined with Caprini Score and other five features extracted from EHR data (TPR = 0.757, FPR = 0.290, AUC = 0.799). Conclusion The Caprini score has good VTE prediction performance in trauma patients, and the use of machine learning methods can further improve the prediction performance.


Author(s):  
Jia Luo ◽  
Dongwen Yu ◽  
Zong Dai

It is not quite possible to use manual methods to process the huge amount of structured and semi-structured data. This study aims to solve the problem of processing huge data through machine learning algorithms. We collected the text data of the company’s public opinion through crawlers, and use Latent Dirichlet Allocation (LDA) algorithm to extract the keywords of the text, and uses fuzzy clustering to cluster the keywords to form different topics. The topic keywords will be used as a seed dictionary for new word discovery. In order to verify the efficiency of machine learning in new word discovery, algorithms based on association rules, N-Gram, PMI, andWord2vec were used for comparative testing of new word discovery. The experimental results show that the Word2vec algorithm based on machine learning model has the highest accuracy, recall and F-value indicators.


2020 ◽  
pp. 426-429
Author(s):  
Devipriya A ◽  
Brindha D ◽  
Kousalya A

Eye state ID is a sort of basic time-arrangement grouping issue in which it is additionally a problem area in the late exploration. Electroencephalography (EEG) is broadly utilized in a vision state in order to recognize people perception form. Past examination was approved possibility of AI & measurable methodologies of EEG vision state arrangement. This research means to propose novel methodology for EEG vision state distinguishing proof utilizing Gradual Characteristic Learning (GCL) in light of neural organizations. GCL is a novel AI methodology which bit by bit imports and prepares includes individually. Past examinations have confirmed that such a methodology is appropriate for settling various example acknowledgment issues. Nonetheless, in these past works, little examination on GCL zeroed in its application to temporal-arrangement issues. Thusly, it is as yet unclear if GCL will be utilized for adapting the temporal-arrangement issues like EEG vision state characterization. Trial brings about this examination shows that, with appropriate element extraction and highlight requesting, GCL cannot just productively adapt to time-arrangement order issues, yet additionally display better grouping execution as far as characterization mistake rates in correlation with ordinary and some different methodologies. Vision state classification is performed and discussed with KNN classification and accuracy is enriched finally discussed the vision state classification with ensemble machine learning model.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2019 ◽  
Vol 8 (2) ◽  
pp. 4499-4504

Heart diseases are responsible for the greatest number of deaths all over the world. These diseases are usually not detected in early stages as the cost of medical diagnostics is not affordable by a majority of the people. Research has shown that machine learning methods have a great capability to extract valuable information from the medical data. This information is used to build the prediction models which provide cost effective technological aid for a medical practitioner to detect the heart disease in early stages. However, the presence of some irrelevant and redundant features in medical data deteriorates the competence of the prediction system. This research was aimed to improve the accuracy of the existing methods by removing such features. In this study, brute force-based algorithm of feature selection was used to determine relevant significant features. After experimenting rigorously with 7528 possible combinations of features and 5 machine learning algorithms, 8 important features were identified. A prediction model was developed using these significant features. Accuracy of this model is experimentally calculated to be 86.4%which is higher than the results of existing studies. The prediction model proposed in this study shall help in predicting heart disease efficiently.


Author(s):  
George W Clark ◽  
Todd R Andel ◽  
J Todd McDonald ◽  
Tom Johnsten ◽  
Tom Thomas

Robotic systems are no longer simply built and designed to perform sequential repetitive tasks primarily in a static manufacturing environment. Systems such as autonomous vehicles make use of intricate machine learning algorithms to adapt their behavior to dynamic conditions in their operating environment. These machine learning algorithms provide an additional attack surface for an adversary to exploit in order to perform a cyberattack. Since an attack on robotic systems such as autonomous vehicles have the potential to cause great damage and harm to humans, it is essential that detection and defenses of these attacks be explored. This paper discusses the plausibility of direct and indirect cyberattacks on a machine learning model through the use of a virtual autonomous vehicle operating in a simulation environment using a machine learning model for control. Using this vehicle, this paper proposes various methods of detection of cyberattacks on its machine learning model and discusses possible defense mechanisms to prevent such attacks.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Sign in / Sign up

Export Citation Format

Share Document