scholarly journals Towards Intelligent Machine Learning Models for Intrusion Detection System

Author(s):  
Pullagura Indira priyadarsini, P V R N S S V Sai Leela, Bankapalli Jyothi

The Internet has become an important resource for mankind. Explicitly information security is an interminable domain to the present world. Hence a more potent Intrusion Detection System (IDS) should be built. Machine Learning techniques are used in developing proficient models for IDS. Imbalanced Learning is a crucial task for many classification processes. Resampling training data towards a more balanced distribution is an effective way to combat this issue. There are most prevalent techniques like under sampling and oversampling.In this paper, the issues of imbalanced data distribution and high dimensionality are addressed using a novel oversampling technique and an innovative feature selection method respectively. Our work suggests a novel hybrid algorithm, HOK-SMOTE which considers an ordered weighted averaging (OWA) approach for choosing the best features from the KDD cup 99 data set and K-Means SMOTE for imbalanced learning. Here an ensemble model is compared against the hybrid algorithm. This ensemble integrates Support Vector Machine (SVM), K Nearest Neighbor (KNN), Gaussian Naïve Bayes (GNB) and Decision Tree (DT). Then weighted average voting is applied for prediction of outputs. In this work, much Experimentationwas conducted on various oversampling techniques and traditional classifiers. The results indicate that the proposed work is the most accurate one among other ML techniques. The precision, recall, F-measure, and ROC curve show notable outcomes. Hence K-Means SMOTE in parallel with ensemble learning has given satisfactory results and a precise solution to the imbalanced learning in IDS. It is ascertained whether ensemble modeling or oversampling techniques are dominating for Intrusion data set.

Intrusion Detection System observes the network traffic and identifies the attack and also inform the admin to corrective action. Powerful Intrusion Detection system is required for detection to various modern attack. There is need of efficient Intrusion Detection system .The focus of IDS research is the application of machine Learning and Deep Learning techniques. Projected work is combination of Deep Learning Technique in which Non Symmetric Deep Auto Encoder and Machine Learning Algorithm, Support Vector Machine Classifier is used to develop the Model. Stack power of the Non symmetric Deep Auto Encoder and Quickness with exactness of the SVM makes the Model very efficient. This Model not only improves the accuracy value but also improve recall and precision. It also cause the reduction of training time .To evaluate the performance of the Model and do the analysis the special Data set which are used are KDD CUP and NSL KDD Dataset.


Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


2013 ◽  
Vol 7 (4) ◽  
pp. 37-52
Author(s):  
Srinivasa K G

Increase in the number of network based transactions for both personal and professional use has made network security gain a significant and indispensable status. The possible attacks that an Intrusion Detection System (IDS) has to tackle can be of an existing type or of an entirely new type. The challenge for researchers is to develop an intelligent IDS which can detect new attacks as efficiently as they detect known ones. Intrusion Detection Systems are rendered intelligent by employing machine learning techniques. In this paper we present a statistical machine learning approach to the IDS using the Support Vector Machine (SVM). Unike conventional SVMs this paper describes a milti model approach which makes use of an extra layer over the existing SVM. The network traffic is modeled into connections based on protocols at various network layers. These connection statistics are given as input to SVM which in turn plots each input vector. The new attacks are identified by plotting them with respect to the trained system. The experimental results demonstrate the lower execution time of the proposed system with high detection rate and low false positive number. The 1999 DARPA IDS dataset is used as the evaluation dataset for both training and testing. The proposed system, SVM NIDS is bench marked with SNORT (Roesch, M. 1999), an open source IDS.


Author(s):  
Sadhana Patidar ◽  
Priyanka Parihar ◽  
Chetan Agrawal

Now-a-days with growing applications over internet increases the security issues over network. Many security applications are designed to cope with such security concerns but still it required more attention to improve speed as well accuracy. With advancement of technologies there is also evolution of new threats or attacks in network. So, it is required to design such detection system that can handle new threats in network. One of the network security tools is intrusion detection system which is used to detect malicious data packets. Machine learning tool is also used to improve efficiency of network-based intrusion detection system. In this paper, an intrusion detection system is proposed with an application of machine learning tools. The proposed model integrates feature reduction, affinity clustering and multilevel Ensemble Support Vector Machine. The proposed model performance is analyzed over two datasets i.e. NSL-KDD and UNSW-NB 15 dataset and achieved approx. 12% of efficiency over other existing work.


2021 ◽  
Vol 6 (2) ◽  
pp. 018-032
Author(s):  
Rasha Thamer Shawe ◽  
Kawther Thabt Saleh ◽  
Farah Neamah Abbas

These days, security threats detection, generally discussed to as intrusion, has befitted actual significant and serious problem in network, information and data security. Thus, an intrusion detection system (IDS) has befitted actual important element in computer or network security. Avoidance of such intrusions wholly bases on detection ability of Intrusion Detection System (IDS) which productions necessary job in network security such it identifies different kinds of attacks in network. Moreover, the data mining has been playing an important job in the different disciplines of technologies and sciences. For computer security, data mining are presented for serving intrusion detection System (IDS) to detect intruders accurately. One of the vital techniques of data mining is characteristic, so we suggest Intrusion Detection System utilizing data mining approach: SVM (Support Vector Machine). In suggest system, the classification will be through by employing SVM and realization concerning the suggested system efficiency will be accomplish by executing a number of experiments employing KDD Cup’99 dataset. SVM (Support Vector Machine) is one of the best distinguished classification techniques in the data mining region. KDD Cup’99 data set is utilized to execute several investigates in our suggested system. The experimental results illustration that we can decrease wide time is taken to construct SVM model by accomplishment suitable data set pre-processing. False Positive Rate (FPR) is decrease and Attack detection rate of SVM is increased .applied with classification algorithm gives the accuracy highest result. Implementation Environment Intrusion detection system is implemented using Mat lab 2015 programming language, and the examinations have been implemented in the environment of Windows-7 operating system mat lab R2015a, the processor: Core i7- Duo CPU 2670, 2.5 GHz, and (8GB) RAM.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abhijit Dnyaneshwar Jadhav ◽  
Vidyullatha Pellakuri

AbstractNetwork security and data security are the biggest concerns now a days. Every organization decides their future business process based on the past and day to day transactional data. This data may consist of consumer’s confidential data, which needs to be kept secure. Also, the network connections when established with the external communication devices or entities, a care should be taken to authenticate these and block the unwanted access. This consists of identification of the malicious connection nodes and identification of normal connection nodes. For that, we use a continuous monitoring of the network input traffic to recognize the malicious connection request called as intrusion and this type of monitoring system is called as an Intrusion detection system (IDS). IDS helps us to protect our network and data from insecure and malicious network connections. Many such systems exists in the real time scenario, but they have critical issues of performance like accuracy and efficiency. These issues are addressed as a part of this research work of IDS using machine learning techniques and HDFS. The TP-IDS is designed in two phases for increasing accuracy. In phase I of TP-IDS, Support Vector Machine (SVM) and k Nearest Neighbor (kNN) are used. In phase II of TP-IDS, Decision Tree (DT) and Naïve Bayes (NB) are used, where phase II is the validation phase of the system for increasing accuracy. Also, both the phases are having Hadoop distributed file system underlying data storage and processing architecture, which allows parallel processing to increase the speed of the system and hence achieve the efficiency in TP-IDS.


An Intrusion Detection System (IDS) is a system, that checks the network or data for abnormal actions and when such activity is discovered it issues an alert. Numerous IDS techniques are in use these days but one major problem with all of them is their performance. Various works have been done on this issue using support vector machine and multilayer perceptron. Supervised learning models such as support vector machines with related learning algorithms are used to analyze the data which is used for regression analysis and also classification. The IDS is used in analyzing big data as there is huge traffic which has to be analyzed to check for suspicious activities, and also be successful in doing so. Hence, an efficient and fast classification algorithm is required. Machine learning techniques such as neural networks and extreme machine learning are used. Both of these techniques are highly regarded and are considered one of the best techniques. Extreme learning machines are feed forward neural networks which have one hidden layer and no back propagation used for classification. Once the intrusion is detected using IDS through ELM then we are also going to detect the type of intrusion using the Random Forest Technique (Multi class classification) efficiently with a higher rate of accuracy and precision. The NSL_KDD dataset which is very well-known used for the training as well as testing of these IDS algorithms. This work determines that compared to artificial neural network and logistic regression extreme learning machines provide a much better rate of intrusion detection, which is 93.96% and is also proven to be more efficient in terms of execution time of 38 seconds


2019 ◽  
Vol 8 (1) ◽  
pp. 42-47
Author(s):  
D. Selvamani ◽  
V. Selvi

The Intrusion Detection System (IDS) can be used broadly for securing the network. Intrusion detection systems (IDS) are typically positioned laterally through former protecting safety automation, like access control and verification, as a subsequent line of resistance that guards data classifications. Feature selection is employed to diminish the number of features in various applications where data has more than hundreds of attributes. Essential or relevant attribute recognition has converted a vital job to utilize data mining algorithms efficiently in today world situations. This article describes the comparative study on the Information Gain, Gain Ratio, Symmetrical Uncertainty, Chi-Square analysis feature selection techniques with different Classification methods like Artificial Neural Network, Naïve Bayes and Support Vector Machine. In this article, different performance metrics has utilized to choose the appropriate Feature Selection method for better data classification in IDS.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1926-1931

Intrusion detection system (IDS) is one of the essential security mechanisms against attacks in WSN. Network intrusion detection system (NIDS) generally uses the classification techniques in order to obtain the best possible accuracy and attack detection rate. In this paper, Intrusion Detection System is designed which uses two-stage hybrid classification method. In the first stage it uses Support Vector Machine (SVM) as anomaly detection, and in the second stage it uses Random Forest (RF)/Decision Tree (DT) as misuse. The abnormal activities are detected in the first stage. These abnormal activities are further analyzed and the known attacks are identified in the second stage and are classified as Denial of Service (DoS) attack, Probe attack, Remote to Local (R2L) attack and User to Root (U2R) attack. Simulation results reveal that the proposed hybrid algorithm obtains better accuracy and detection rate than the single classifier namely, SVM, RF and DT algorithm. The experimental results also shows that hybrid algorithm can detect anomaly activity in a reliable way. Proposed technique uses the standard NSL KDD dataset to evaluate/calculate the performance of the proposed approach. Here the results show that the proposed Hybrid SVM-RF/DT IDS technique performs better in terms of detection rate, accuracy and recall than the existing SVM, RF and DT approaches.


Sign in / Sign up

Export Citation Format

Share Document