scholarly journals Comparison of methodologies for determining the carbon content in wood

2021 ◽  
Vol 14 (Supl. 2) ◽  
pp. 1-8
Author(s):  
Thiago Cardoso Silva ◽  
Emmanoella Costa Guaraná Araujo ◽  
Carlos Roberto Sanquetta ◽  
José Benjamin Machado Coelho ◽  
Egídio Bezerra Neto ◽  
...  

New procedures seek to subsidize studies on biomass and carbon in forests and wood, mainly of tropical species. Thus, the work aimed to compare four methods of carbon determination in wood. A pre-dried sample of tropical wood was prepared and previously ground. In this sample, the carbon content was determined, applying four different methodologies, namely: conversion of organic matter, volumetric method, colorimetric method and dry combustion (LECO). The Tukey test was performed to determine the difference between the carbon levels obtained by each method. As a result, all methods differed statistically from each other: the colorimetric method underestimated the levels of organic carbon in a tropical wood; although widely used, the volumetric method has become obsolete; and the organic matter conversion method requires specific conversion factors for each material. So, from the environmental point of view and accuracy in obtaining data, the dry combustion method, in addition to being the closest to the standard, is also the one that generates less waste, being the most suitable to determinate carbon in wood.

2011 ◽  
Vol 393-395 ◽  
pp. 580-586 ◽  
Author(s):  
Ma Lin ◽  
Feng Ri Li ◽  
Wei Wei Jia

This paper applied dry combustion method to determinate the carbon content rates in different organs of natural white birch trees in xiaoxinganling mountain area and carried on the analysis and comparison. The results showed that: the average carbon content rates of leaves,branches,trunks and roots was 49.31 %,46.60,46.70%,45.67%,respectively.According to the average values, the sequence of carbon content rates in different organs from the maximum to the minimum was leaves,trunks,branches and roots. Additionally, in different layers of a tree, the sequence of carbon content rates in leaves from the maximum to the minimum was: the upper strata, the middle strata, the lower strata. The sequence of carbon content rates in branches was: the upper strata, the lower strata, the middle strata. The sequence of carbon content rates in trunks was: bark, sapwood, heartwood.The sequence of carbon content rates in roots was: level 2 root, level 1 root, level 3 root. Single tree average rate of carbon 46.49% Higher than 51.25% in northern China. Variance analysis showed that the differences of Bark and sapwood achieved significant level (p<0.05) as well as the differences of bark and heartwood, while the rest were not significant.


2020 ◽  
Vol 51 (Special) ◽  
Author(s):  
Khoshnaw & Esmail

This study was conducted to compare between two methods of soil organic matter determination for main soil orders in Kurdistan region/Iraq, for this purpose forty-five soil samples were taken then the organic matter was determined using chemical (Walkley-Black (wet) method and loss-on-ignition method (dry) combustion method. The results indicated the significant correlation (r = 0.88**) between the studied methods It means there is good adjustment to convert organic matter by loss-on-ignition method (dry) to Walkley-Black (wet) method organic matter by this linear equation (organic matter by loss-on-ignition =1.651* Walkley-Black method organic matter +2.1877) this equation can be used to convert organic matter by two methods for Mollisols(M), Vertisols(V) and Aridisols(A) in Hawler(H), Sulaimani(S) and Duhok(D) governorates, this equation is very important and economic to determine and convert dry method to wet method, the amount of organic matter for M, V, A was recorded the highest value (49.5, 24.8, 20 gkg-1) respectively for Mollisols, Vertisols, and Aridisols at Hawler (H), Sulaimani (S), and Duhok(D) respectively for (DM5, SV4, DA1) in Duhok Mollisols, Sulaimani Vertisols and Duhok Aridisol respectively for walk- black (wet) method, the highest value for dry method organic matter in Mollisols, Vertisols, Aridisols was recorded (97.6, 77.9, 50.3 g kg-1) for soil orders (MD3, VD4, AD4) respectively.


1935 ◽  
Vol 25 (4) ◽  
pp. 598-609 ◽  
Author(s):  
Allan Walkley

1. The details of the Dennstedt dry-combustion method for determining carbon in soils were described, and some simplifications suggested.2. The Bangor modified Kjeldahl method for carbon and nitrogen in soils requires carefully standardised heating. Errors may arise from contamination of sandy soils by material abraded during grinding in iron or porcelain mills.3. For many heavy soils the addition of water before the Kjeldahl digestion is convenient but not essential. For heavy alkaline soils with little organic matter it is advisable to grind the soil very finely and to add water.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1290
Author(s):  
Danica Fazekašová ◽  
Gabriela Barančíková ◽  
Juraj Fazekaš ◽  
Lenka Štofejová ◽  
Ján Halas ◽  
...  

This paper presents the results of pedological and phytocoenological research focused on the detailed research of chemical parameters (pH, organic carbon, and nutrients), risk elements (As-metalloid, Cd, Co, Cr, Cu, Ni, Pb, and Zn), and species composition of the vegetation of two different peatlands on the territory of Slovakia—Belianske Lúky (a fen) and Rudné (a bog). Sampling points were selected to characterize the profile of the organosol within the peatland, the soil profile between the peatland and the agricultural land, and the soil profile of the outlying agricultural land, which is used as permanent grassland. Based on phytocoenological records, a semi-quantitative analysis of taxa in accordance with the Braun–Blanquet scale was performed. The study revealed that the thickness of the peat horizon of the fen in comparison with the bog is very low. In terms of the quality of organic matter, the monitored peatlands are dominated by fresh plant residues such as cellulose and lignin. Differences between individual types of peatlands were also found in the soil reaction and the supply of nitrogen to the organic matter of peat. The values of the soil exchange reaction were neutral on the fen, as well as slightly alkaline but extremely low on the bog. A significantly higher nitrogen supply was found in the organic matter of the fen in contrast to the bog. At the same time, extremely low content of accessible P and an above-limit content of As in the surface horizons were also found on the fen. From the phytocoenological point of view, 22 plant species were identified on the fen, while only five species were identified on the bog, which also affected the higher diversity (H’) and equitability (e). The results of the statistical testing confirmed the diversity of the studied peatlands and the different impact of environmental variables on plant diversity.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2249
Author(s):  
Nikolett Uzinger ◽  
Orsolya Szécsy ◽  
Nóra Szűcs-Vásárhelyi ◽  
István Padra ◽  
Dániel Benjámin Sándor ◽  
...  

Organic waste and the compost and vermicompost derived from it may have different agronomic values, but little work is available on this aspect of sewage sludge. A 75-day pot experiment with perennial ryegrass (Lolium perenne) as the test plant aimed to investigate the fertiliser value and organic matter replenishment capacity of digested sewage sludge (DS) and the compost (COM) and vermicompost (VC) made from it, applied in 1% and 3% doses on acidic sand and calcareous loam. The NPK content and availability, changes in organic carbon content and plant biomass, and the efficiency of the amendments as nitrogen fertilisers were investigated. The final average residual carbon content for DS, COM, and VC was 35 ± 34, 85 ± 46, and 55 ± 46%, respectively. The organic carbon mineralisation rate depended on the soil type. The additives induced significant N mineralisation in both soils: the average increment in mineral N content was 1.7 times the total added N on acidic sand and 4.2 times it on calcareous loam for the 1% dose. The agronomic efficiency of COM and VC as fertilisers was lower than that of DS. In the short term, DS proved to be the best fertiliser, while COM was the best for organic matter replenishment.


2020 ◽  
Vol 23 (3) ◽  
pp. 117-124
Author(s):  
Dušan Šrank ◽  
Vladimír Šimanský

The effort to achieve the sustainable farming system in arable soil led to the intensive search for a new solution but an inspiration can also be found in the application of traditional methods of soil fertility improvement as it is shown in numerous examples in history. Recently many scientific teams have focused their attention on the evaluation of biochar effects on soil properties and crop yields. Since there are a lot of knowledge gaps, especially in explanations how biochar can affect soil organic matter (SOM) and humus substances, we aimed this study at the solution of these questions. Therefore, the objective of the experiment was to evaluate the impact of two biochar substrates (B1 – biochar blended with sheep manure, and B2 – biochar blended with sheep manure and the residue from the biogas station) at two rates (10 and 20 t ha-1) applied alone or in combination with mineral fertilizers (Urea was applied in 2018, at rate 100 kg ha-1, and Urea at rate 100 kg ha-1 + AMOFOS NP 12-52 at 100 kg ha-1 were applied in 2019) on the quantity and quality of SOM and humus of sandy soil (Arenosol, Dolná Streda, Slovakia). The results showed that application of the biochar substrates together with mineral fertilizers (MF) had more pronounced effect on the organic matter mineralization in the sandy soil which resulted in low accumulation of soil organic carbon (Corg) and labile carbon compared to biochar substrates treatments without MF. The share of humic substances in Corg significantly decreased by 16, 50, 16 and 24% in B1 at 10 t ha-1, B1 at 20 t ha-1, B2 at 10 t ha-1 and B2 at 20 t ha-1 treatments, respectively, compared to the control. A similar tendency was observed for biochar substrates treatments + MF, compared to MF control. The carbon content of humic substances (CHS) was equal to 4.40 – 5.80 g kg-1 and the biochar substrates had statistically significant influence on CHS content. On average, there was a smaller decrease of CHS in B1 at rate 10 t ha-1 than at rate 20 t ha-1 and no effect of B2 compared to control. The carbon content of fulvic acid (CFA) was 9% higher in B1 at 10 t ha-1, and 20 t ha-1, 47% higher in B2 at 10 t ha-1 and 17% higher in B2 at 20 t ha-1 compared to control. As a result of biochar substrates + MF application, the reduction in CFA was observed. The results showed a decrease of CHA : CFA ratio with association to biochar substrates alone application compared to control on one hand, and a wider of CHA : CFA ratio in biochar substrates + MF treatments in comparison to MF control on the other hand. Humus stability was increased in biochar substrates alone treatments compared to control, on the other hand, compared to MF control, the application of biochar substrates + MF resulted in a lower humus stability.


1972 ◽  
Vol 78 (3) ◽  
pp. 355-362 ◽  
Author(s):  
K. W. Moir

SUMMARYGrasses and legumes comprising poor to good quality temperate and tropical species were fed to either cattle or sheep in 36 digestibility experiments. Cell wall in these forages was the ash-free and protein-free residue after sequential extraction with acidpepsin, organic solvents and either water for grasses or ammonium oxalate for legumes. The average amount of cell wall digested per 100 g forage OM was 40·0±0·59 g in grasses and 19·8±1·85 g in legumes. It was considered that within grasses and within legumes the physiology of ruminant digestion, rather than forage quality, was the main determinant of the average amount of cell wall digested and the difference between grasses and legumes was due to interaction of the ruminant digestion process with the physical structure of the cell wall. Of forage factors governing variation about the physiological average, the total cell wall had some effect on the amount of cell wall digested, but the lignin concentration in the cell wall had no effect.Among grasses and legumes the average, apparently undigested, protein-free non-cell-wall component was 6·2±0·13 g per 100 g forage OM. This component and digestible protein relative to total protein varied among different sets of data. It was concluded that only the component of digestible organic matter which was governed by the relative proportions of cell walls and cellular contents was predictable from chemical composition. It was considered that selection in plant breeding should be based on both digestible cell wall and cell-wall content instead of digestible organic matter.


Sign in / Sign up

Export Citation Format

Share Document