scholarly journals IMPLEMENTATION OF THE DIFFERENCE SCHEME FOR ABSORPTION EQUATION TYPE PROBLEMS APPLYING PARALLEL COMPUTING TECHNOLOGIES

Author(s):  
Maksims Zigunovs

This paper describes a way of parallel algorithm technology usage for analyzing physical processes parabolic differential problems on the surface. This analysis determine the temperature distribution on the surface. Such analysis can fit calculation of Maxwell and Maxwell-Stokes equations and can be focused on mathematical models that can be reduced to the absorption or diffusion-convection-reaction equations with the initial and boundary conditions of different order (1st, 2nd, 3rd order of boundary conditions). Parallel computing technologies usage provides an acceleration possibilities of mentioned calculations in different way and effect depending of parallel technology type and method combinations used during the calculations.

2021 ◽  
Vol 11 (10) ◽  
pp. 4589
Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Marko Bartolac ◽  
Ana Skender

The main principle of vibration-based damage detection in structures is to interpret the changes in dynamic properties of the structure as indicators of damage. In this study, the mode shape damage index (MSDI) method was used to identify discrete damages in plate-like structures. This damage index is based on the difference between modified modal displacements in the undamaged and damaged state of the structure. In order to assess the advantages and limitations of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete (RC) plate under 10 different damage cases. The MSDI values were calculated through considering single and/or multiple damage locations, different levels of damage, and boundary conditions. The experimental results confirmed that the MSDI method can be used to detect the existence of damage, identify single and/or multiple damage locations, and estimate damage severity in the case of single discrete damage.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 461
Author(s):  
Kenta Oishi ◽  
Yoshihiro Shibata

In this paper, we consider the motion of incompressible magnetohydrodynamics (MHD) with resistivity in a domain bounded by a free surface. An electromagnetic field generated by some currents in an external domain keeps an MHD flow in a bounded domain. On the free surface, free boundary conditions for MHD flow and transmission conditions for electromagnetic fields are imposed. We proved the local well-posedness in the general setting of domains from a mathematical point of view. The solutions are obtained in an anisotropic space Hp1((0,T),Hq1)∩Lp((0,T),Hq3) for the velocity field and in an anisotropic space Hp1((0,T),Lq)∩Lp((0,T),Hq2) for the magnetic fields with 2<p<∞, N<q<∞ and 2/p+N/q<1. To prove our main result, we used the Lp-Lq maximal regularity theorem for the Stokes equations with free boundary conditions and for the magnetic field equations with transmission conditions, which have been obtained by Frolova and the second author.


2003 ◽  
Vol 10 (3) ◽  
pp. 401-410
Author(s):  
M. S. Agranovich ◽  
B. A. Amosov

Abstract We consider a general elliptic formally self-adjoint problem in a bounded domain with homogeneous boundary conditions under the assumption that the boundary and coefficients are infinitely smooth. The operator in 𝐿2(Ω) corresponding to this problem has an orthonormal basis {𝑢𝑙} of eigenfunctions, which are infinitely smooth in . However, the system {𝑢𝑙} is not a basis in Sobolev spaces 𝐻𝑡 (Ω) of high order. We note and discuss the following possibility: for an arbitrarily large 𝑡, for each function 𝑢 ∈ 𝐻𝑡 (Ω) one can explicitly construct a function 𝑢0 ∈ 𝐻𝑡 (Ω) such that the Fourier series of the difference 𝑢 – 𝑢0 in the functions 𝑢𝑙 converges to this difference in 𝐻𝑡 (Ω). Moreover, the function 𝑢(𝑥) is viewed as a solution of the corresponding nonhomogeneous elliptic problem and is not assumed to be known a priori; only the right-hand sides of the elliptic equation and the boundary conditions for 𝑢 are assumed to be given. These data are also sufficient for the computation of the Fourier coefficients of 𝑢 – 𝑢0. The function 𝑢0 is obtained by applying some linear operator to these right-hand sides.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2511
Author(s):  
Jintao Liu ◽  
Di Xu ◽  
Shaohui Zhang ◽  
Meijian Bai

This paper investigates the physical processes involved in the water filling and air expelling process of a pipe with multiple air valves under water slow filling condition, and develops a fully coupledwater–air two-phase stratified numerical model for simulating the process. In this model, the Saint-Venant equations and the Vertical Average Navier–Stokes equations (VANS) are respectively applied to describe the water and air in pipe, and the air valve model is introduced into the VANS equations of air as the source term. The finite-volume method and implicit dual time-stepping method (IDTS) with two-order accuracy are simultaneously used to solve this numerical model to realize the full coupling between water and air movement. Then, the model is validated by using the experimental data of the pressure evolution in pipe and the air velocity evolution of air valves, which respectively characterize the water filling and air expelling process. The results show that the model performs well in capturing the physical processes, and a reasonable agreement is obtained between numerical and experimental results. This agreement demonstrates that the proposed model in this paper offers a practical method for simulating water filling and air expelling process in a pipe with multiple air valves under water slow filling condition.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


2014 ◽  
Vol 8 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
J. Zhou ◽  
J.-L. Tison ◽  
G. Carnat ◽  
N.-X. Geilfus ◽  
B. Delille

Abstract. We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged from 25.9 to 116.4 nmol L−1sw, indicating a supersaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations in sea ice ranged from 3.4 to 17.2 nmol L−1ice and the deduced CH4 concentrations in brine from 13.2 to 677.7 nmol L−1brine. We investigated the processes underlying the difference in CH4 concentrations between sea ice, brine and under-ice water and suggest that biological controls on the storage of CH4 in ice were minor in comparison to the physical controls. Two physical processes regulated the storage of CH4 in our landfast ice samples: bubble formation within the ice and sea ice permeability. Gas bubble formation due to brine concentration and solubility decrease favoured the accumulation of CH4 in the ice at the beginning of ice growth. CH4 retention in sea ice was then twice as efficient as that of salt; this also explains the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient, CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marked the end of CH4 storage.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Sign in / Sign up

Export Citation Format

Share Document