scholarly journals ON THE POSSIBILITY OF LASER STRIPPING OF COMMUNICATION CABLES WITH LOW-POWER CO2 LASER

Author(s):  
Lyubomir Lazov ◽  
Andris Sniķeris

Laser engraving is one of the most commonly used laser procedures for interacting with laser material. The speed, ease of use and high precision make it an attractive process for use by manufacturers and for removing insulation from various cables. Cable stripping is a particularly common operation in aeronautics. The aircraft is equipped with several hundred kilometers of cables to control and operate the various systems of the aircraft and most of these cables must be stripped at both opposite ends to allow the cable to be connected to different terminals.This report examines the possibility of removing polyvinyl chloride (PVC) insulation from telecommunication cables of different colours and thicknesses up to 600 [μm]. The experimental measurements of the study were performed with a low-power continuous CO2 laser system. The main functional dependence of the width and depth of the ablation zone on the main technological parameters, such as the average power and the processing speed, have been experimentally studied. The zones of laser impact are observed with a laser microscope. The graphic dependencies are analyzed in order to determine the optimal working intervals.The analysis aims to help solve problems related to the application of small diameter communication cables in the production of various communication devices and components for the needs of industry.

2021 ◽  
Vol 17 (2) ◽  
pp. 1-27
Author(s):  
Morteza Hosseini ◽  
Tinoosh Mohsenin

This article presents a low-power, programmable, domain-specific manycore accelerator, Binarized neural Network Manycore Accelerator (BiNMAC), which adopts and efficiently executes binary precision weight/activation neural network models. Such networks have compact models in which weights are constrained to only 1 bit and can be packed several in one memory entry that minimizes memory footprint to its finest. Packing weights also facilitates executing single instruction, multiple data with simple circuitry that allows maximizing performance and efficiency. The proposed BiNMAC has light-weight cores that support domain-specific instructions, and a router-based memory access architecture that helps with efficient implementation of layers in binary precision weight/activation neural networks of proper size. With only 3.73% and 1.98% area and average power overhead, respectively, novel instructions such as Combined Population-Count-XNOR , Patch-Select , and Bit-based Accumulation are added to the instruction set architecture of the BiNMAC, each of which replaces execution cycles of frequently used functions with 1 clock cycle that otherwise would have taken 54, 4, and 3 clock cycles, respectively. Additionally, customized logic is added to every core to transpose 16×16-bit blocks of memory on a bit-level basis, that expedites reshaping intermediate data to be well-aligned for bitwise operations. A 64-cluster architecture of the BiNMAC is fully placed and routed in 65-nm TSMC CMOS technology, where a single cluster occupies an area of 0.53 mm 2 with an average power of 232 mW at 1-GHz clock frequency and 1.1 V. The 64-cluster architecture takes 36.5 mm 2 area and, if fully exploited, consumes a total power of 16.4 W and can perform 1,360 Giga Operations Per Second (GOPS) while providing full programmability. To demonstrate its scalability, four binarized case studies including ResNet-20 and LeNet-5 for high-performance image classification, as well as a ConvNet and a multilayer perceptron for low-power physiological applications were implemented on BiNMAC. The implementation results indicate that the population-count instruction alone can expedite the performance by approximately 5×. When other new instructions are added to a RISC machine with existing population-count instruction, the performance is increased by 58% on average. To compare the performance of the BiNMAC with other commercial-off-the-shelf platforms, the case studies with their double-precision floating-point models are also implemented on the NVIDIA Jetson TX2 SoC (CPU+GPU). The results indicate that, within a margin of ∼2.1%--9.5% accuracy loss, BiNMAC on average outperforms the TX2 GPU by approximately 1.9× (or 7.5× with fabrication technology scaled) in energy consumption for image classification applications. On low power settings and within a margin of ∼3.7%--5.5% accuracy loss compared to ARM Cortex-A57 CPU implementation, BiNMAC is roughly ∼9.7×--17.2× (or 38.8×--68.8× with fabrication technology scaled) more energy efficient for physiological applications while meeting the application deadline.


2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Nelson Marquina ◽  
Roger Dumoulin-White ◽  
Arkady Mandel ◽  
Lothar Lilge

AbstractA randomized placebo-controlled clinical trial to evaluate an adjunctive treatment modality for pain associated with knee disorders was conducted utilizing a therapeutic laser system (low energy, non-surgical).The therapeutic laser system utilized a dual wavelength, multiple diode laser cluster probe with five super-pulsed 905 nm near-infrared (NIR) laser diodes, each emitting at 40 mW average power and four continuous wave 660 nm visible (VIS) red laser diodes, each emitting at 25 mW. It was used as an adjunctive modality providing 12 treatments, three times a week to a homogeneous patient population (n=126), in combination with standardized chiropractic techniques, to evaluate effectiveness on subjects presenting with osteoarthritis and knee pain. The primary endpoint was measured by the visual analog scale (VAS) to assess pain levels on a scale of 0–10. The success criteria for an individual patient in this study were identified as an improvement of 30% or more in the VAS from baseline to 12th treatment and/or an improvement of 20% or more in the VAS from baseline to 30-day follow-up evaluation.The data obtained in the study demonstrated that the present therapeutic laser system provided significant pain relief and osteoarthritic improvements in all primary evaluation criteria, with a statistical and clinical significance of


2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


2018 ◽  
Vol 15 (6) ◽  
pp. 792-803
Author(s):  
Sudhakar Jyothula

PurposeThe purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).Design/methodology/approachIn the present scenario, the inclination of battery for portable devices has been increasing tremendously. Therefore, battery life has become an essential element for portable devices. To increase the battery life of portable devices such as communication devices, these have to be made with low power requirements. Hence, power consumption is one of the main issues in CMOS design. To reap a low-power battery with optimum delay constraints, a new methodology is proposed by using the advantages of a low leakage GALEOR approach. By integrating the proposed GALEOR technique with conventional PTFFs, a reduction in power consumption is achieved.FindingsThe design was implemented in mentor graphics EDA tools with 130 nm technology, and the proposed technique is compared with existing conventional PTFFs in terms of power consumption. The average power consumed by the proposed technique (RP-PTFF clock gating with the GALEOR technique) is reduced to 47 per cent compared to conventional PTFF for 100 per cent switching activity.Originality/valueThe study demonstrates that RP-PTFF with clock gating using the GALEOR approach is a design that is superior to the conventional PTFFs.


Author(s):  
V.V. Petrov ◽  
G.V. Kuptsov ◽  
V.A. Petrov ◽  
A.V. Laptev ◽  
A.V. Kirpichnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document