scholarly journals Influence of the lead angle of an spherical diamond head on the roughness parameters of corundum ceramics

Mechanik ◽  
2019 ◽  
Vol 92 (11) ◽  
pp. 748-750
Author(s):  
Jan Burek ◽  
Artur Szajna

The results of research on grinding of pre-sustained corundum ceramics with the use of a spherical diamond head are presented. In particular, the influence of the angle α of grinding wheel axis on selected surface roughness parameters at variable feed speed have been investigated. The distribution of the effective cutting speed in the contact zone of the grinding wheel with the object for the selected grinding depth have been also determined.

2018 ◽  
Vol 1148 ◽  
pp. 109-114
Author(s):  
M. Balaji ◽  
C.H. Nagaraju ◽  
V.U.S. Vara Prasad ◽  
R. Kalyani ◽  
B. Avinash

The main aim of this work is to analyse the significance of cutting parameters on surface roughness and spindle vibrations while machining the AA6063 alloy. The turning experiments were carried out on a CNC lathe with a constant spindle speed of 1000rpm using carbide tool inserts coated with Tic. The cutting speed, feed rate and depth of cut are chosen as process parameters whose values are varied in between 73.51m/min to 94.24m/min, 0.02 to 0.04 mm/rev and 0.25 to 0.45 mm respectively. For each experiment, the surface roughness parameters and the amplitude plots have been noted for analysis. The output data include surface roughness parameters (Ra,Rq,Rz) measured using Talysurf and vibration parameter as vibration amplitude (mm/sec) at the front end of the spindle in transverse direction using single channel spectrum analyzer (FFT).With the collected data Regression analysis is also performed for finding the optimum parameters. The results show that significant variation of surface irregularities and vibration amplitudes were observed with cutting speed and feed. The optimum cutting speed and feed from the regression analysis were 77.0697m/min and 0.0253mm/rev. for the minimum output parameters. No significant effect of depth of cut on output parameters is identified.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950081 ◽  
Author(s):  
CHUNHUI JI ◽  
SHUANGQIU SUN ◽  
BIN LIN ◽  
TIANYI SUI

This work performed molecular dynamic simulations to study the 2D profile and 3D surface topography in the nanometric cutting process. The least square mean method was used to model the evaluation criteria for the surface roughness at the nanometric scale. The result showed that the cutting speed was the most important factor influencing the spacing between the peaks, the sharpness of the peaks, and the randomness of the profile. The plastic deformation degree of the machined surface at the nanometric scale was significantly influenced by the cutting speed and depth of cut. The 2D and 3D surface roughness parameters exhibited a similar variation tendency, and the parameters Ra and Rq tended to increase gradually with an increase in the cutting speed and a decrease in the depth of cut. Finally, it is concluded that at the nanometric scale, the 3D surface roughness parameters could more accurately reflect the real surface characteristics than the 2D parameters.


2015 ◽  
Vol 809-810 ◽  
pp. 93-98
Author(s):  
Ionuţ Urzică ◽  
Ciprian Râznic ◽  
Mihai Apostol ◽  
Corina Mihaela Pavăl ◽  
Mihai Boca ◽  
...  

Frequently, on the drawings of mechanical parts, only indications concerning the surface roughness parameter Ra and, relatively rarely, the surface roughness parameter Rz are included. However, the study of the machined surface roughness highlights the necessity to use yet other surface roughness parameters, in order to have a clearer image on the state of the machined surface. Some other surface roughness parameters possible to be used and presenting importance, without the parameters Ra and Rz, were highlighted. One took into consideration the possibility of measuring parameters Rsk and Rmr by means of the available surface roughness testers. Experimental researches of turning by applying the method of full factorial experiment were developed. As input factors in turning process, the cutting speed, the feed rate and the tool nose radius were used. The experimental results were mathematically processed, being determined empirical mathematical models that highlight the influence of certain input factors of turning process on the values of some surface roughness parameters characterized by a more restricted use


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 898-900 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Tomasz Warda

The purpose of this investigation was to determine whether and to what extent the technological parameters of turning (feed, cutting speed) affect selected surface roughness parameters of aluminum alloy EN-AW 7075 (AlZn5.5MgCu). The principal findings indicate a significant impact of feed and show on the surface roughness and simultaneously show that cutting speed has no effect on the value of surface roughness parameters under investigation. An artificial neural network was employed to evaluate the prediction of surface roughness parameter Rz in turning.


2017 ◽  
Vol 7 (5) ◽  
pp. 2047-2055
Author(s):  
M. H. El-Axir ◽  
M. M. Elkhabeery ◽  
M. M. Okasha

The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang) are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM) and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.


2018 ◽  
Vol 919 ◽  
pp. 92-100
Author(s):  
Peter Košťál ◽  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Radovan Holubek

In order to increase the cutting and breaking capacity of abrasive water jet machining (AWJM), abrasive particles are usually added to water. The AWJM technology is generally used for harder and heavier machinable materials like thick sheets, composite materials with metal and ceramic properties and others within these categories to just cite a few. The contribution is mainly focused on the analysis of the surface properties of the steel S235 after the cutting process, and this depending on the cutting speed of the water jet. Three different cutting speeds were used for the analysis because this cutting parameter significantly affects the resulting quality of the machined surface. A contact profile method was used to analyze surface roughness. The observed surface roughness parameters were the Ra, Rt and Rz respectively. The above-mentioned surface roughness parameters were measured in three positions, i.e.: at the inlet, middle and exit positions of the water jet with respect to the machined material.


Author(s):  
Sudhansu Ranjan Das ◽  
Amaresh Kumar ◽  
Debabrata Dhupal ◽  
Kali Charan Rath

In the present study, an attempt has been made to evaluate the performance of multilayer coated carbide inserts during dry turning of hardened EN24 steel (47 HRC). The effect of machining parameters (depth of cut, feed and cutting speed) on surface roughness parameters (Ra and Rz) were investigated by applying ANOVA. The experiments were planned based on Taguchi’s L27 Orthogonal array design. Results showed that surface roughness parameters (Ra and Rz) are mainly influenced by feed and cutting speed, whereas depth of cut exhibits minimum influence on surface roughness (Rz) and neglegible influence in case of surface roughness (Ra). The experimental data were further anlyzed to predict the optimal range of surface roughness parameters (Ra and Rz). Finally, second order regression models were carried out to find out the relationship between the machining parameters and surface roughness parameters.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Sign in / Sign up

Export Citation Format

Share Document