Protective role of silver nanoparticles in influenza infection

2021 ◽  
Vol 21 (3) ◽  
pp. 81-84
Author(s):  
Mohammad Al Farroukh ◽  
Ekaterina A. Skomorokhova ◽  
Daria N. Magazenkova ◽  
Irina V. Kiseleva

BACKGROUND: The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the virocell concept. This concept suggests that the targets for suppressing viral reproduction can be found in the hosts metabolism. AIM: Evaluation of the effect of copper status indicators on influenza infection in mice. MATERIALS AND METHODS: Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. The following treatment regimens were used: mice were pretreated four days before infection and then every day during infection development until the end of the experiment (day 14). RESULTS: The mice treated with AgNPs demonstrated significantly lower mortality, the protection index reached 6070% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNPs treatment did not influence influenza virus replication. CONCLUSIONS: This study provides support for the view that silver nanoparticles could be used as protection against influenza.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 679
Author(s):  
Irina V. Kiseleva ◽  
Mohammad Al Farroukh ◽  
Ekaterina A. Skomorokhova ◽  
Andrei R. Rekstin ◽  
Ekaterina A. Bazhenova ◽  
...  

The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the “virocell” concept. Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. Three treatment regimens were used: Scheme 1—mice were pretreated 4 days before infection and then every day during infection development; Scheme 2—mice were pretreated four days before infection and on the day of virus infection; Scheme 3—virus infection and AgNP treatment started simultaneously, and mice were injected with AgNPs until the end of the experiment. The mice treated by Scheme 1 demonstrated significantly lower mortality, the protection index reached 60–70% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNP treatment did not influence influenza virus replication. The possibility of using nanosilver as an effective indirectly-acting antiviral drug is discussed.


1967 ◽  
Vol 18 (1) ◽  
pp. 169 ◽  
Author(s):  
GI Alexander ◽  
JM Harvey ◽  
JH Lee ◽  
WC Stubbs

Four experiments described determined the effect of copper and cobalt therapy on the growth and productivity of cattle on the marine plains of central coastal Queensland. Copper was administered by subcutaneous injections of copper glycinate, and cobalt by dosing per os with heavy cobalt pellets. The growth of weaned cattle was significantly improved by copper, particularly from June to October when limited palatable feed on the high ground forced the animals to forage on the para grass swamps. During the same period, 2-year-old heifers also showed a growth response to copper. Their conception rate increased after 19 months of copper therapy but not after 10.5 months. The growth rate of their calves bas significantly increased by copper supplementation. Liver copper concentrations were always low in untreated cattle. Copper therapy maintained these reserves at higher levels, which varied according to the season and the rate of growth of the animals. Calves born to treated cows had higher initial liver copper reserves than those from untreated cows, but in the absence of copper therapy these reserves declined to low and comparable levels in all calves at weaning. Pasture analyses suggest that the copper deficiency revealed was due to interference with copper metabolism rather than to a low copper status in the diet; this interference did not appear to be due to molybdenum. Weaned cattle appeared to respond to cobalt during 1960 but not subsequently, while the cows and calves showed no response. The vitamin B12 status in liver and serum appeared adequate in both treated and untreated cattle.


2021 ◽  
Vol 22 (11) ◽  
pp. 5498
Author(s):  
Ludmila V. Puchkova ◽  
Irina V. Kiseleva ◽  
Elena V. Polishchuk ◽  
Massimo Broggini ◽  
Ekaterina Yu. Ilyechova

Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.


2010 ◽  
Vol 65 (5-6) ◽  
pp. 419-428 ◽  
Author(s):  
Julia Serkedjieva ◽  
Tsvetanka Stefanova ◽  
Ekaterina Krumova

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMØ) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mamadou Aliou Barry ◽  
Florent Arinal ◽  
Cheikh Talla ◽  
Boris Gildas Hedible ◽  
Fatoumata Diene Sarr ◽  
...  

Abstract Background Influenza is a major cause of morbidity and mortality in Africa. However, a lack of epidemiological data remains for this pathology, and the performances of the influenza-like illness (ILI) case definitions used for sentinel surveillance have never been evaluated in Senegal. This study aimed to i) assess the performance of three different ILI case definitions, adopted by the WHO, USA-CDC (CDC) and European-CDC (ECDC) and ii) identify clinical factors associated with a positive diagnosis for Influenza in order to develop an algorithm fitted for the Senegalese context. Methods All 657 patients with a febrile pathological episode (FPE) between January 2013 and December 2016 were followed in a cohort study in two rural villages in Senegal, accounting for 1653 FPE observations with nasopharyngeal sampling and influenza virus screening by rRT-PCR. For each FPE, general characteristics and clinical signs presented by patients were collected. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) for the three ILI case definitions were assessed using PCR result as the reference test. Associations between clinical signs and influenza infection were analyzed using logistic regression with generalized estimating equations. Sore throat, arthralgia or myalgia were missing for children under 5 years. Results WHO, CDC and ECDC case definitions had similar sensitivity (81.0%; 95%CI: 77.0–85.0) and NPV (91.0%; 95%CI: 89.0–93.1) while the WHO and CDC ILI case definitions had the highest specificity (52.0%; 95%CI: 49.1–54.5) and PPV (32.0%; 95%CI: 30.0–35.0). These performances varied by age groups. In children < 5 years, the significant predictors of influenza virus infection were cough and nasal discharge. In patients from 5 years, cough, nasal discharge, sore throat and asthenia grade 3 best predicted influenza infection. The addition of “nasal discharge” as a symptom to the WHO case definition decreased sensitivity but increased specificity, particularly in the pediatric population. Conclusion In summary, all three definitions studies (WHO, ECDC & CDC) have similar performance, even by age group. The revised WHO ILI definition could be chosen for surveillance purposes for its simplicity. Symptomatic predictors of influenza virus infection vary according the age group.


2020 ◽  
Vol 148 ◽  
Author(s):  
B. E. Young ◽  
T. M. Mak ◽  
L. W. Ang ◽  
S. Sadarangani ◽  
H. J. Ho ◽  
...  

Abstract Influenza vaccine effectiveness (VE) wanes over the course of a temperate climate winter season but little data are available from tropical countries with year-round influenza virus activity. In Singapore, a retrospective cohort study of adults vaccinated from 2013 to 2017 was conducted. Influenza vaccine failure was defined as hospital admission with polymerase chain reaction-confirmed influenza infection 2–49 weeks after vaccination. Relative VE was calculated by splitting the follow-up period into 8-week episodes (Lexis expansion) and the odds of influenza infection in the first 8-week period after vaccination (weeks 2–9) compared with subsequent 8-week periods using multivariable logistic regression adjusting for patient factors and influenza virus activity. Records of 19 298 influenza vaccinations were analysed with 617 (3.2%) influenza infections. Relative VE was stable for the first 26 weeks post-vaccination, but then declined for all three influenza types/subtypes to 69% at weeks 42–49 (95% confidence interval (CI) 52–92%, P = 0.011). VE declined fastest in older adults, in individuals with chronic pulmonary disease and in those who had been previously vaccinated within the last 2 years. Vaccine failure was significantly associated with a change in recommended vaccine strains between vaccination and observation period (adjusted odds ratio 1.26, 95% CI 1.06–1.50, P = 0.010).


2013 ◽  
Vol 87 (24) ◽  
pp. 13775-13784 ◽  
Author(s):  
O. Perwitasari ◽  
A. C. Torrecilhas ◽  
X. Yan ◽  
S. Johnson ◽  
C. White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document