scholarly journals PETROGRAPHY FOR ASSESSMENT OF MOULDING COMPOUND OF ANCIENT POTTERY

2015 ◽  
Vol 4 (3) ◽  
pp. 100-107
Author(s):  
Marianna Altkseevna Kulkova

Ancient ceramics are the valuable artifacts which saves the information about ancient people and their traditions. The process of making pottery is begun with the choosing and preparation of raw clay and temper material and further applying of different techniques (moulding of vessel, decoration etc.) and finally firing. Petrographical analysis of ancient pottery allows to determine the mineralogical composition of ceramic matrix, the features of their technology and to identify the raw mineral sources (Feliu et al. 2004, Papadopoulou et al. 2006, Bastie et al. 2006). Such kind investigations expand the frames of our knowledge about ancient technological traditions in pottery making. The following characteristics could be determined in thin-sections of ceramic shards: nature and features of plastic and aplastic inclusions; textural and optical characteristics of clay matrix; shape, amount and orientation of pores; features of surface treatment, decoration. This information is animportant for understanding of principles of ancient technologies. The different temper materials inside clay matrix such as sand, crushed rocks, organic materials, shells, grog can be identified accurately using petrography. The ceramic structure and characteristics of mineral changes during the firing are indicators of firing temperatures and atmosphere. A distribution of clay particles and porous inside of ceramic matrix is useful for reconstruction of moulding methods. The study of ceramic collection of the same cultural tradition and from the same region using petrography gives the possibility for differentiation of the natural and cultural factors influenced on the choose of raw materials, variations in the ceramic composition and techniques. This method is one the most precise for identification of an import pottery.

2002 ◽  
Vol 56 (10) ◽  
pp. 1320-1328 ◽  
Author(s):  
Brigitte Wopenka ◽  
Rachel Popelka ◽  
Jill Dill Pasteris ◽  
Susan Rotroff

Mineralogical studies using Raman microprobe spectroscopy and high-magnification optical spectroscopy were performed on sherds of pottery vessels that were used as cooking pots and water jars in Hellenistic Greece (third and second century BC). Of specific interest was the mineralogical identification of the so-called inclusions, which are phases that morphologically stand out from the fired clay matrix and result from the presence of inorganic temper in the original paste mixture. The sizes of mono- and polymineralic inclusions in the sherds range from 5 μm to 2 mm. The combined use of Raman microprobe spectroscopy and incident-light optical microscopy permits identification of specific minerals (such as quartz, albite, calcite, hematite, anhydrite, epidote, rutile, anatase, and apatite) in various different types of inclusions and then visual evaluation of the abundance of those minerals in each sample. The application of our nondestructive analytical approach is documented on a set of four sherds (each on the order of several cm2) from excavations of the ancient Agora of Athens. The information on the mineralogy obtained via Raman spectroscopy can shed light on the provenance of the raw materials and firing conditions of the pottery and thus aids archeologists with their historical interpretations.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Vayia Xanthopoulou ◽  
Ioannis Iliopoulos ◽  
Ioannis Liritzis

The present study deals with the characterization of a ceramic assemblage from the Late Mycenaean (Late Helladic III) settlement of Kastrouli, at Desfina near Delphi, Central Greece using various analytical techniques. Kastrouli is located in a strategic position supervising the Mesokampos plateau and the entire peninsula and is related to other nearby coeval settlements. In total 40 ceramic sherds and 8 clay raw materials were analyzed through mineralogical, petrographic and microstructural techniques. Experimental briquettes (DS) made from clayey raw materials collected in the vicinity of Kastrouli, were fired under temperatures (900 and 1050 °C) in oxidizing conditions for comparison with the ancient ceramics. The petrographic analysis performed on thin sections prepared from the sherds has permitted the identification of six main fabric groups and a couple of loners. The aplastic inclusions recognized in all fabric groups but one confirmed the local provenance since they are related to the local geology. Fresh fractures of representative sherds were further examined under a scanning electron microscope (SEM/EDS) helping us to classify them into calcareous (CaO > 6%) and non-calcareous (CaO < 6%) samples (low and high calcium was noted in earlier pXRF data). Here, the ceramic sherds with broad calcium separation are explored on a one-to-one comparison on the basis of detailed mineralogical microstructure. Moreover, their microstructure was studied, aiming to estimate their vitrification stage. The mineralogy of all studied samples was determined by means of X-ray powder diffraction (XRPD), permitting us to test the validity of the firing temperatures revealed by the SEM analysis. The results obtained through the various analytical techniques employed are jointly assessed in order to reveal potters’ technological choices.


2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.


Author(s):  
Ian Whitbread

Fabric description is fundamental to the characterization, technological analysis and provenance determination of archaeological ceramics. It encompasses description of the arrangement, size, shape, frequency and composition of ceramic material constituents. These properties are used to identify the raw materials, their processing, vessel construction methods, and firing conditions. The process of description should, so far as possible, be an objective record of observed fabric properties that is independent of interpretations concerning technology and provenance. Fabric descriptions are made of ceramics in hand specimen and of samples prepared as thin sections for examination under a polarizing microscope. Rapid evaluation of fabric properties in the field is achieved by studying hand specimens using a magnifying glass or stereomicroscope. Laboratory-based analysis of thin sections provides more accurate and comprehensive identification of fabric properties, especially mineral and rock fragments in coarse fabrics, in terms of qualitative and quantitative data.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 447-457
Author(s):  
A. Pountouenchi ◽  
D. Njoya ◽  
A. Njoya ◽  
D. Rabibisao ◽  
J.R. Mache ◽  
...  

ABSTRACTThree clayey materials named MY3, KK and KG originating from the Foumban region (west Cameroon) were analysed to determine their granulometry, plasticity, major-element chemistry and mineralogy. Dilatometric and ceramic behaviour were also investigated. Clays were shaped by uniaxial pressing in a steel mould. Shaped samples were heated at 1300, 1400 and 1500°C. The end products were characterized in terms of their density, porosity and compressive strength. Raw materials differ in terms of their mineralogical composition, grain-size distribution, Al2O3 content and the nature and abundance of impurities inducing specific thermal behaviour during dilatometric analysis and sintering tests. The final material properties may be related to the main features of the raw materials used.


2018 ◽  
Vol 56 ◽  
pp. 01006
Author(s):  
Natalia Кhrunina ◽  
Anton Cheban

The article is devoted to improving the processes of extraction of natural carbon minerals through increased selectivity and reduce dilution, as well as processing of ash-slag wastes to reduce environmental burdens and increasing complexity of extracting minerals. Data are elemental and mineral composition, energy dispersive microanalysis by scanning electron microscope JEOL JCM-6000. As a result of natural objects analysis carbon minerals, with their typing on structural and mineralogical composition, marked by the characteristic difficult structural signs plastoobraznyh and lenticular deposits. A method of treatment of structured development of carbonaceous deposits of minerals based on the improved design of the working body of the harvester, that will increase the efficiency of minerals through mining selectivity. As a result, microanalysis samples ash wastes found the presence of native gold, рlatinum and silver. The application of ways of dressing of secondary raw materials using innovative technologies developed, based on the processes of gravitational and ultrasonic cavitation effects, provide comprehensiveness of allocating valuable components micron level and reduce the pollution of Wednesday.


2014 ◽  
Vol 798-799 ◽  
pp. 514-519 ◽  
Author(s):  
Michelle Pereira Babisk ◽  
Thalissa Pizetta Altoé ◽  
Henrique Junio de Oliveira Lopes ◽  
Ulisses Soares do Prado ◽  
Monica Castoldi Borlini Gadioli ◽  
...  

Red mud is a specific term applied for a residue generated during the processing of aluminum ores, mainly bauxite in the Bayer process, to produce alumina (Al2O3). In several countries where bauxite is mined and processed, distinct red muds are generated in ever growing amounts and becoming an environmental problem. This problem is also affecting the large bauxite processing plants in Brazil and a possible solution for the red mud is its addition to clay ceramics. Before an industrial scale addition is implanted, the specific red mud needs to be characterized for compatible behavior with the ceramic clay matrix. Therefore, the objective of the present work was to characterize a red mud generated in Brazil for an eventual addition to clay ceramic. This was conducted through the determination of density, chemical and mineralogical composition as well as size distribution and microscopic observation of particles. The results indicated that the specific red mud investigated is compatible with clays and has a potential for addition in common red ceramics.


2016 ◽  
Vol 30 (31) ◽  
pp. 1650379
Author(s):  
Reenu Jacob ◽  
Jayakumari Isac

New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.


2011 ◽  
Vol 356-360 ◽  
pp. 1900-1908 ◽  
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Shao Bin Wang

A Brazilian fly ash sample (CM1) was used to synthesize zeolites by hydrothermal treatment. Products and raw materials were characterized in terms of real density (Helium Pycnometry), specific surface area (BET method), morphological analysis (SEM), chemical composition (XRF) and mineralogical composition (XRD). The zeolites (ZM1) from fly ash were used for metal ion removal from water. Results indicated that hydroxy-sodalite zeolite could be synthesized from fly ash sample. The zeolite presented higher specific surface area and lower SiO2/Al2O3ratio than the ash precursor. The adsorption showed that cadmium is more preferentially adsorbed on ZM1 than zinc. The adsorption equilibrium time for both Zn2+and Cd2+was 20 hours in a batch process. The adsorption isotherms were better fitted by the Langmuir model and the highest percentages of removal using ZM1 were obtained at pH 6 and 5 and doses of 15 and 18 g L-1for Zn2+and Cd2+, respectively. Thermodynamic studies indicated that adsorption of Zn2+and Cd2+by ZM1 was a spontaneous, endothermic process and presented an increase of disorder at the interface solid/solution.


Sign in / Sign up

Export Citation Format

Share Document