Use of seismoscope records to determine ML and peak velocities

1984 ◽  
Vol 74 (1) ◽  
pp. 315-324
Author(s):  
David M. Boore

Abstract More information about ground motion can be extracted from seismoscope records than a single point on a response spectrum. To demonstrate this, the relation between seismoscope response and Wood-Anderson instrument output and peak horizontal ground velocity has been studied by simulating the various responses for a range of distances and magnitudes. The simulations show that the relation used by Jennings and Kanamori (1979) to convert from peak seismoscope readings to the peak response of a Wood-Anderson instrument has a distance- and magnitude-dependent systematic error. The error is negligible, however, for modern seismoscopes at distances of a few tens of kilometers. At several hundred kilometers, the relation underestimates the Wood-Anderson response by as much as a factor of two. The spread in Jennings and Kanamori's estimate of ML for the 1906 San Francisco earthquake, recorded on seismoscopes having relatively low natural frequencies (0.26 and 0.5 Hz), is reduced by the results in this paper—the upper value, from a seismoscope in Carson City, Nevada, at 290 km from the fault, going from ML = 7.2 to ML = 7.0 and the lower value, from Yountville, California (R ≈ 60 km), going from about 6.3 to 6.4. About 0.3 units of the remaining spread may be due to local geologic site conditions. If the 0.3 units is distributed equally between the Yountville and Carson City recordings, the estimates of ML for the San Francisco earthquake then become 6.5 and 6.8, somewhat lower than Jennings and Kanamori's final estimates of 634 to 7. Although the error in using the relation of Jennings and Kanamori to estimate Wood-Anderson response was at most a factor of 1.6 for the 1906 earthquake, the error can be substantially larger for smaller earthquakes recorded on similar low frequency seismoscopes. The relation between Wood-Anderson and seismoscope response used by Jennings and Kanamori can be combined with an empirical relation between peak horizontal velocity and Wood-Anderson response to predict peak velocity from seismocope recordings. The simulations show that this relation (vmax = 8.1Awa, where vmax is the peak horizontal velocity in centimeters/second and Awa is one-half the range of the Wood-Anderson motion in meters) forms a lower bound for estimates of peak velocity from seismoscope recordings. The relation is good for stations within about 100 km of earthquakes with moment magnitudes of about 4.5 to 6.5, and it underestimates peak velocity by factors up to 2 or 3 for larger earthquakes at distances within 100 km. An application of the simulation method to the 1976 Guatemala earthquake (moment magnitude = 7.6) results in 37 cm/sec as a lower bound to vmax, with 66 cm/sec as a more likely value, from the seismocope recording in Guatemala City (approximately 25 km from the Motagua fault).

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yong-Woon Kim ◽  
Jae-Kyeong Jang ◽  
Jung-Ryul Lee ◽  
Hak-Seong Gim

The use of pyrodevices in the aerospace industry has been increasing because of their ability to implement separation missions with a small weight, for example, space launchers, spacecrafts, and missiles. During operation, pyrodevices generate pyroshock, which causes failures of electronic devices. Recently, a pyroshock simulation method using laser shock has been developed to evaluate the risk of pyroshock before flight mission. However, depending on the structure, the laser shock showed some difficulty simulating pyroshock in the low-frequency regime accompanying vibration. Therefore, in this study, we developed a hybrid method of numerical modal analysis and laser shock-based experimental simulation to visualize the pyroshock propagation in all the relevant frequency regimes. For the proof of concept of the proposed method, we performed experiments of explosive bolt-induced shock and pyrolock-induced shock in the open-box-type tension joint and compared the hybrid simulation results with actual pyroshock. From the results, we obtained the simulated time-domain signal with an averaged peak-to-peak acceleration difference (PAD) of 11.2% and the shock response spectrum (SRS) with an averaged mean acceleration difference (MAD) of 28.5%. In addition, we were able to visualize the simulation results in the temporal and spectral domains to compare the pyroshock induced by each pyrodevice. A comparison of the simulations showed that the pyrolock had an impulse level of 1/12 compared to the explosion bolt. In particular, it was confirmed that the pyrolock-induced shock at the near field can cause damage to the electronic equipment despite a smaller impulse than that of the explosive bolt-induced shock. The hybrid method developed in this paper demonstrates that it is possible to simulate pyroshock for all the frequency regimes in complex specimens and to evaluate the risk in the time and frequency domain.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


2013 ◽  
Vol 365-366 ◽  
pp. 224-228
Author(s):  
Tian Ma ◽  
Chuan Ri Li ◽  
Shuang Long Rong

To predict an airborne equipment lifetime with finite element simulation method, use ANSYS and Flothem, respectively, to analysis vibration stress and temperature stress, corrected by kinetic experiment; then import the results into the failure prediction software-CALCE PWA, set the intensity and duration of stress according to its mission profile, finally get the component failure life prediction results under comprehensive temperature and vibration stress; extract the Monte-Carlo simulation data, use the single point of failure distribution fitting, fault clustering and multipoint distribution fusion method to get the board and the whole machines lifetime and reliability prediction. The design refinement suggestion of the airborne equipment is given at the end of the conclusion.


1976 ◽  
Vol 66 (2) ◽  
pp. 467-500 ◽  
Author(s):  
Roger D. Borcherdt ◽  
James F. Gibbs

abstract Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The recordings show marked amplitude variations in the frequency band 0.25 to 3.0 Hz that are consistently related to the local geological conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1, 1) for granite, (1.5, 1.6) for the Franciscan Formation, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for alluvium, and (3.7, 11.3) for bay mud. Spectral amplification curves define predominant ground frequencies in the band 0.25 to 3.0 E for bay mud sites and for some alluvial sites. Amplitude spectra computed from recordings of seismic background noise at 50 sites do not generally define predominant ground frequencies. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2 . 6 9 - 1 . 9 0 log ( Distance in kilometers ) . ( 1 ) For sites on other geological units, intensity increments, derived from this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) according to the empirical relation Intensity Increment = 0 . 2 7 + 2 . 7 0 log ( AHSA ) . ( 2 ) Average intensity increments predicted for the various geological units are −0.3 for granite, 0.2 for the Franciscan Formation, 0.6 for the Great Valley sequence, 0.8 for the Santa Clara Formation, 1.3 for alluvium, and 2.4 for bay mud. The maximum intensity map predicted on the basis of these data delineates areas in the San Francisco Bay region of potentially high intensity for large earthquakes on either the San Andreas fault or the Hayward fault. The map provides a crude form of seismic zonation for the region and may be useful for certain general types of land-use zonation.


1982 ◽  
Vol 72 (2) ◽  
pp. 643-661
Author(s):  
S. Shyam Sunder ◽  
Jerome J. Connor

Abstract A new procedure for routinely processing strong-motion earthquake signals using state-of-the-art filter design and implementation techniques is presented. The model, shown to be both accuratet and efficient, is sufficiently flexible so that the signal sampling period and filter parameters can be easily varied. A comparison of results from the existing United States model (Trifunac and Lee, 1973) and the proposed model show significant differences in the ground motion and response spectrum characteristics for the same set of filter limits. Drifts in integrated velocity and displacement characteristics and theoretically incorrect asymptotic behavior of response spectrum curves arising out of the existing United States processing scheme have been eliminated. In addition to the importance of appropriately selecting a low-frequency limit for band-pass filtering the signals, this work demonstrates the sensitivity of the acceleration trace to the particular choice of a high-frequency limit.


2020 ◽  
Vol 17 (3) ◽  
pp. 463-474
Author(s):  
Shengjie Li ◽  
Ying Rao

Abstract Seismic low-frequency amplitude shadows have been widely used as a hydrocarbon indicator. This study investigates the effect of reservoir properties and seismic wave mode conversion on the characteristics of the low-frequency amplitude shadows in gas-bearing reservoirs. The target gas reservoirs are typically related to the lithology of tight sandstone with strong heterogeneity. Pore-fluid distribution within the reservoirs presents patchy saturation in the vertical and horizontal directions, and this patchy saturation easily induces low-frequency shadows beneath gas-bearing reservoirs. These low-frequency shadows are validated by using a poroelastic simulation method. The results of our field case-based study indicate that pore-fluid property, plus the thickness and heterogeneity of reservoirs are the key elements in the generation of low-frequency shadows. The results also indicate that the poroelastic simulation method can be used to effectively predict the spatial distribution of gas-bearing reservoirs, by directly verifying the low-frequency shadow phenomenon existing in the seismic data.


2011 ◽  
Vol 308-310 ◽  
pp. 189-192
Author(s):  
Long Xing Chen ◽  
Wen Qi Ma ◽  
He Chun Yu ◽  
Hai Yan Liu ◽  
Hong Wang Du

The aerostatic circular thrust bearing was taken as a study subject. The numerical simulation method was used to calculate the flow passage. Meanwhile, the single-point testing method was used to test the pressure distribution. The simulation and experiment measurement results were compared and analyzed. The results show that: The single-point testing method is effective to capture the change of flow characteristics. The overall results of simulation and testing coincide with each other well. In the range of cone cavity, the flow pattern for the gas is turbulent flow, and the flow field should be divided into different zones for simulation.


Author(s):  
Shigeru Aoki ◽  
Yuji Nakanishi ◽  
Kazutoshi Tominaga ◽  
Takeshi Otaka ◽  
Tadashi Nishimura ◽  
...  

Reduction of seismic response of mechanical system is important problem for aseismic design. Some types of base isolation systems are developed and used in actual base of buildings and floors in buildings for reduction of seismic response of mechanincal system. In this paper, a base isolation system utilizing bearing with friction and restoring force of bearing is proposed. Friction bearing consists of two plates having spherical concaves and oval type metal or spherical metal with rubber. First, effectiveness of the base isolation system is examined experimentally. Using artificial time histories, the isolated table is shaken on the shaking table. The maximum value of response is reduced and sum of squares of response is significantly reduced. Power spectrum is significantly reduced in almost of all frequency regions, except for very low frequency region. Next, in order to examine reduction of seismic response of actual mechanical system, a console rack is set on the isolated plate. Seismic response is also significantly reduced. Finally, obtained results of experiment are examined by simulation method. An analytical model considering friction and restoring force is used. From simulation method, effectiveness of the proposed base isolation system is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document