Seismic moment catalog of large shallow earthquakes, 1900 to 1989

1992 ◽  
Vol 82 (3) ◽  
pp. 1306-1349 ◽  
Author(s):  
Javier F. Pacheco ◽  
Lynn R. Sykes

Abstract We compile a worldwide catalog of shallow (depth < 70 km) and large (Ms ≥ 7) earthquakes recorded between 1900 and 1989. The catalog is shown to be complete and uniform at the 20-sec surface-wave magnitude Ms ≥ 7.0. We base our catalog on those of Abe (1981, 1984) and Abe and Noguchi (1983a, b) for events with Ms ≥ 7.0. Those catalogs, however, are not homogeneous in seismicity rates for the entire 90-year period. We assume that global rates of seismicity are constant on a time scale of decades and most inhomogeneities arise from changes in instrumentation and/or reporting. We correct the magnitudes to produce a homogeneous catalog. The catalog is accompanied by a reference list for all the events with seismic moment determined at periods longer than 20 sec. Using these seismic moments for great and giant earthquakes and a moment-magnitude relationship for smaller events, we produce a seismic moment catalog for large earthquakes from 1900 to 1989. The catalog is used to study the distribution of moment released worldwide. Although we assumed a constant rate of seismicity on a global basis, the rate of moment release has not been constant for the 90-year period because the latter is dominated by the few largest earthquakes. We find that the seismic moment released at subduction zones during this century constitutes 90% of all the moment released by large, shallow earthquakes on a global basis. The seismic moment released in the largest event that occurred during this century, the 1960 southern Chile earthquake, represents about 30 to 45% of the total moment released from 1900 through 1989. A frequency-size distribution of earthquakes with seismic moment yields an average slope (b value) that changes from 1.04 for magnitudes between 7.0 and 7.5 to b = 1.51 for magnitudes between 7.6 and 8.0. This change in the b value is attributed to different scaling relationships between bounded (large) and unbounded (small) earthquakes. Thus, the earthquake process does have a characteristic length scale that is set by the downdip width over which rupture in earthquakes can occur. That width is typically greater for thrust events at subduction zones than for earthquakes along transform faults and other tectonic environments.

1975 ◽  
Vol 65 (5) ◽  
pp. 1385-1405 ◽  
Author(s):  
R. R. Blandford

Abstract Earthquake source theories of Haskell, Brune, and Savage have been drawn upon to develop a description of an earthquake as a major slip accompanied by many smaller tensional and slip events. We find natural explanations of several previously unexplained observations, such as: Robustness of the MS: mb discriminant, P corner frequency higher than S corner frequency for shallow earthquakes, High-frequency P/S amplitude ratio higher for shallow earthquakes than previous theories predict, Increase of complexity as a function of third moment, Small mb relative to MS for transform faults. (This can also be explained by emergent short-period P wave forms or by a low-Q region underlying the source). The theory predicts that MS:mb populations of earthquakes and explosions will not converge at small magnitudes. The theory also suggests that the standard interpretations of corner-frequency measurements can provide only a lower limit to fault-plane dimensions and, in combination with the moment, only an upper limit on stress drop.


1977 ◽  
Vol 67 (3) ◽  
pp. 587-598 ◽  
Author(s):  
Robert J. Geller ◽  
Hiroo Kanamori

abstract The “revised magnitudes”, M, converted from Gutenberg's unified magnitude, m, and listed by Richter (1958) and Duda (1965) are systematically higher than the magnitudes listed by Gutenberg and Richter (1954) in Seismicity of the Earth. This difference is examined on the basis of Gutenberg and Richter's unpublished original worksheets for Seismicity of the Earth. It is concluded that (1) the magnitudes of most shallow “class a” earthquakes in Seismicity of the Earth are essentially equivalent to the 20-sec surface-wave magnitude, Ms; (2) the revised magnitudes, M, of most great shallow (less than 40 km) earthquakes listed in Richter (1958) (also used in Duda, 1965) heavily emphasize body-wave magnitudes, mb, and are given by M=14Ms+34(1.59mb−3.97). For earthquakes at depths of 40 to 60 km, M is given by M = (1.59 mb − 3.97). M and Ms are thus distinct and should not be confused. Because of the saturation of the surface-wave magnitude scale at Ms ≃ 8.0, use of empirical moment versus magnitude relations for estimating the seismic moment results in large errors. Use of the fault area, S, is suggested for estimating the moment.


2021 ◽  
Author(s):  
Lynn Sykes

<p>Decadal forerunning seismic activity is used to map great asperities that subsequently ruptured in very large, shallow earthquakes at subduction zones and transform faults. The distribution of forerunning shocks of magnitude Mw>5.0 is examined for 50 mainshocks of Mw 7.5 to 9.1 from 1993 to 2020. The zones of large slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Much forerunning activity occurred at smaller asperities along the peripheries of the rupture zones of great and giant mainshocks. Asperities are strong, well-coupled portions of plate interfaces. Sizes of great asperities as ascertained from forerunning activity generally agree with the areas of high seismic slip as determined by others using geodetic and tide-gauge data and finite-source seismic modeling. Different patterns of forerunning activity on time scales of about 5 to 45 years are attributed to the sizes and spacing of asperities. This permits many great asperities to be mapped decades before they rupture in great and giant shocks. Rupture zones of many large earthquakes are bordered either along strike, updip, or downdip by zones of low plate coupling. Several bordering regions were sites of forerunning activity, aftershocks and slow-slip events. Several poorly coupled subduction zones, however, are characterized by few great earthquakes and little forerunning activity. The detection of forerunning and precursory activities of various kinds should be sought on the peripheries of great asperities. The manuscript can be found at <strong>http://www.ldeo.columbia.edu/~sykes</strong></p><p> </p>


2019 ◽  
Vol 109 (5) ◽  
pp. 2036-2049 ◽  
Author(s):  
José Antonio Bayona Viveros ◽  
Sebastian von Specht ◽  
Anne Strader ◽  
Sebastian Hainzl ◽  
Fabrice Cotton ◽  
...  

Abstract The Seismic Hazard Inferred from Tectonics based on the Global Strain Rate Map (SHIFT_GSRM) earthquake forecast was designed to provide high‐resolution estimates of global shallow seismicity to be used in seismic hazard assessment. This model combines geodetic strain rates with global earthquake parameters to characterize long‐term rates of seismic moment and earthquake activity. Although SHIFT_GSRM properly computes seismicity rates in seismically active continental regions, it underestimates earthquake rates in subduction zones by an average factor of approximately 3. We present a complementary method to SHIFT_GSRM to more accurately forecast earthquake rates in 37 subduction segments, based on the conservation of moment principle and the use of regional interface seismicity parameters, such as subduction dip angles, corner magnitudes, and coupled seismogenic thicknesses. In seven progressive steps, we find that SHIFT_GSRM earthquake‐rate underpredictions are mainly due to the utilization of a global probability function of seismic moment release that poorly captures the great variability among subduction megathrust interfaces. Retrospective test results show that the forecast is consistent with the observations during the 1 January 1977 to 31 December 2014 period. Moreover, successful pseudoprospective evaluations for the 1 January 2015 to 31 December 2018 period demonstrate the power of the regionalized earthquake model to properly estimate subduction‐zone seismicity.


2021 ◽  
Author(s):  
Marianna Corre ◽  
Martine Lanson ◽  
Arnaud Agranier ◽  
Stephane Schwartz ◽  
Fabrice Brunet ◽  
...  

<p>Magnetite (U-Th-Sm)/He dating method has a strong geodynamic significance, since it provides geochronological constraints on serpentinization episodes, which are associated to important geological processes such as ophiolite obductions, subduction zones, transform faults and fluid circulations. Although helium content that range from 0.1 pmol/g to 20 pmol/g can routinely be measured, the application of this dating technique however is still limited due to major analytical obstacles. The dissolution of a single magnetite crystal and the measurement of the U, Th and Sm present at the ppb level in the corresponding solution, remains highly challenging, especially because of the absence of magnetite standard. In order to overcome these analytical issues, two strategies have been followed, and tested on magnetite from high-pressure rocks from the Western Alps (Schwartz et al., 2020). Firstly, we purified U, Th and Sm (removing Fe and other major elements) using ion exchange columns in order to analyze samples, using smaller dilution. Secondly, we performed in-situ analyzes by laser-ablation-ICPMS. Since no solid magnetite certified standard is yet available, we synthetized our own by precipitating magnetite nanocrystals. The first quantitative results obtained by LA-ICP-MS using this synthetic material along with international glass standards, are promising. The laser-ablation technique overcomes the analytical difficulties related to sample dissolution and purification. It thus opens the path to the dating of magnetite (and also spinels) in various ultramafic rocks such as mantle xenoliths or serpentinized peridotites in ophiolites.</p><p>Schwartz S., Gautheron C., Ketcham R.A., Brunet F., Corre M., Agranier A., Pinna-Jamme R., Haurine F., Monvoin G., Riel N., 2020, Unraveling the exhumation history of high-press ure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth and Planetary Science Letters 543 (2020) 116359.</p>


1989 ◽  
Vol 79 (4) ◽  
pp. 1177-1193
Author(s):  
Jacques Talandier ◽  
Emile A. Okal

Abstract We have developed a new magnitude scale, Mm, based on the measurement of mantle Rayleigh-wave energy in the 50 to 300 sec period range, and directly related to the seismic moment through Mm = log10M0 − 20. Measurements are taken on the first passage of Rayleigh waves, recorded on-scale on broadband instruments with adequate dynamical range. This allows estimation of the moment of an event within minutes of the arrival of the Rayleigh wave, and with a standard deviation of ±0.2 magnitude units. In turn, the knowledge of the seismic moment allows computation of an estimate of the high-seas amplitude of a range of expectable tsunami heights. The latter, combined with complementary data from T-wave duration and historical references, have been integrated into an automated procedure of tsunami warning by the Centre Polynésien de Prévention des Tsunamis (CPPT), in Papeete, Tahiti.


1995 ◽  
Vol 38 (2) ◽  
Author(s):  
M. Di Bona ◽  
M. Cocco ◽  
A. Rovelli ◽  
R. Berardi ◽  
E. Boschi

The strong motion accelerograms recorded during the 1990 Eastern Sicily earthquake have been analyzed to investigate source and attenuation parameters. Peak ground motions (peak acceleration, velocity and displacement) overestimate the values predicted by the empirical scaling law proposed for other Italian earthquakes, suggesting that local site response and propagation path effects play an important role in interpreting the observed time histories. The local magnitude, computed from the strong motion accelerograms by synthesizing the Wood-Anderson response, is ML = 5.9, that is sensibly larger than the local magnitude estimated at regional distances from broad-band seismograms (ML = 5.4). The standard omega-square source spectral model seems to be inadequate to describe the observed spectra over the entire frequency band from 0.2 to 20 Hz. The seismic moment estimated from the strong motion accelerogram recorded at the closest rock site (Sortino) is Mo = 0.8 x 1024 dyne.cm, that is roughly 4.5 times lower than the value estimated at regional distances (Mo = 3.7 x 1024 dyne.cm) from broad-band seismograms. The corner frequency estimated from the accelera- tion spectra i.5 J; = 1.3 Hz, that is close to the inverse of the dUl.ation of displacement pulses at the two closest recording sites. This value of corner tì.equency and the two values of seismic moment yield a Brune stress drop larger than 500 bars. However, a corner frequency value off; = 0.6 Hz and the seismic moment resulting from regional data allows the acceleration spectra to be reproduced on the entire available frequency band yielding to a Brune stress drop of 210 bars. The ambiguity on the corner frequency value associated to this earthquake is due to the limited frequency bandwidth available on the strong motion recordil1gs. Assuming the seismic moment estimated at regional distances from broad-band data, the moment magnitude for this earthquake is 5.7. The higher local magnitude (5.9) compared with the moment magnitude (5.7) is due to the weak regional attenuation. Beside this, site amplifications due to surface geology have produced the highest peak ground motions among those observed at the strong motion sites.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


2021 ◽  
Author(s):  
Álvaro González

<p>Statistical seismology relies on earthquake catalogs as homogeneous and complete as possible. However, heterogeneities in earthquake data compilation and reporting are common and frequently are not adverted.</p><p>The Global Centroid Moment Tensor Catalog (www.globalcmt.org) is considered as the most homogeneous global database for large and moderate earthquakes occurred since 1976, and it has been used for developing and testing global and regional forecast models.</p><p>Changes in the method used for calculating the moment tensors (along with improvements in global seismological monitoring) define four eras in the catalog (1976, 1977-1985, 1986-2003 and 2004-present). Improvements are particularly stark since 2004, when intermediate-period surface waves started to be used for calculating the centroid solutions.</p><p>Fixed centroid depths, used when the solution for a free depth did not converge, have followed diverse criteria, depending on the era. Depth had to be fixed mainly for shallow earthquakes, so this issue is more common, e.g. in the shallow parts of subduction zones than in the deep ones. Until 2003, 53% of the centroids had depths calculated as a free parameter, compared to 78% since 2004.</p><p>Rake values have not been calculated homogenously either. Until 2003, the vertical-dip-slip components of the moment tensor were assumed as null when they could not be constrained by the inversion (for 3.3% of the earthquakes). This caused an excess of pure focal mechanisms: rakes of -90° (normal), 0° or ±180° (strike-slip) or +90° (thrust). Even disregarding such events, rake histograms until 2003 and since 2004 are not equivalent to each other.</p><p>The magnitude of completeness (<em>M</em><sub>c</sub>) of the catalog is analyzed here separately for each era. It clearly improved along time (average <em>M</em><sub>c</sub> values being ~6.4 in 1976, ~5.7 in 1977-1985, ~5.4 in 1986-2003, and ~5.0 since 2004). Maps of <em>M</em><sub>c</sub> for different eras show significant spatial variations.</p>


1988 ◽  
Vol 129 ◽  
pp. 351-352
Author(s):  
Richard Gordon ◽  
Charles Demets ◽  
Seth Stein ◽  
Don Argus ◽  
Dale Woods

The standard against which VLBI measurements of continental drift and plate motions are compared are self-consistent global models of “present-day” plate motions determined from geophysical data: marine magnetic anomalies at oceanic spreading centers, azimuths of transform faults, and orientations of earthquake slip vectors on transform faults and at subduction zones. Past global plate motion models have defined regions where the assumption that plates behave rigidly has apparently lead to systematic misfits, sometimes exceeding 10 mm/yr, of plate motion data. Here, we present some of the results from NUVEL-1, a new, self-consistent global model of present-day relative plate motions determined from a compilation and analysis of existing and new geophysical data. These data and new techniques have allowed us to eliminate nearly all statistically significant systematic misfits identified by earlier models, suggesting that the rigid-plate assumption is an excellent approximation when plate motions are averaged over several million years. Beside improving estimates of the motion on previously identified plate boundaries, we have also identified and determined motions on other boundaries whose subtle morphologies, lack of seismicity, and very slow (< 10 mm/yr) relative motions have made them difficult to detect. Here we focus on the application of VLBI measurements to help resolve plate tectonic problems and then briefly outline our results for Pacific-North America motion and plate motions in the Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document