2018 ◽  
Vol 1 (2) ◽  
pp. 40-57
Author(s):  
Abdulghani Alsamarai ◽  
Shler Khorshed ◽  
Imad Weli

Background: Antibiotic resistance emerged as clinical problem challenge the effective treatment of infections. Virulence factor may play an important role in the influence of antimicrobial resistance. Objective: To determine the frequency of resistance gene in E. coli clinical isolates from women with urinary tract infection. Materials and Methods: Fifteen E.coli clinical isolates were tested by PCR to determine their molecular characterization. Results: The bla CTX –M gene was not detected in 6.7% out of the tested 15 E. coli clinical isolates from women with urinary tract infection. However, bla OXA gene was detected in all E. coli tested clinical isolates from pregnant women, female student and diabetic women with urinary tract infection. While bla TEM gene and bla SHV gene were not detected in 33.3% and 40% out of the tested E. coli clinical isolates respectively. Conclusions: Four types of ESBL genes were detected, and shows new trend of distribution, which indicated the predominance of OXA and CTX-M genes.


2020 ◽  
Vol 1 (1) ◽  
pp. 36-41
Author(s):  
Gaurav Ranabhat ◽  
Ashmita Dhakal ◽  
Saurav Ranabhat ◽  
Ananta Dhakal ◽  
Rakshya Aryal

Modern biotechnology enables an organism to produce a totally new product which the organism does not or cannot produce normally through the incorporation of the technology of ‘Genetic engineering’. Biotechnology shows its technical merits and new development prospects in breeding of new plants varieties with high and stable yield, good quality, as well as stress tolerance and resistance. Some of the most prevailing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops incorporated with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Plant biotechnology has gained importance in the recent past for increasing the quality and quantity of agricultural, horticultural, ornamental plants, and in manipulating the plants for improved agronomic performance. Recent developments in the genome sequencing will have far reaching implications for future agriculture. From this study, we can know that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the future benefit of human being.


Crops ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 32-41
Author(s):  
Michel Ravelonandro

Viruses are microbes that have high economic impacts on the ecosystem. Widely spread by humans, plant viruses infect not only crops but also wild species. There is neither a cure nor a treatment against viruses. While chemists have developed further research of inefficient curative products, the relevant concept based on sanitary measures is consistently valuable. In this context, two major strategies remain indisputable. First, there are control measures via diagnostics presently addressing the valuable technologies and tools developed in the last four decades. Second, there is the relevant use of modern biotechnology to improve the competitiveness of fruit-tree growers.


2021 ◽  
Vol 13 (7) ◽  
pp. 3687
Author(s):  
Vincent Smith ◽  
Justus H. H. Wesseler ◽  
David Zilberman

This perspective discusses the impact of political economy on the regulation of modern biotechnology. Modern biotechnology has contributed to sustainable development, but its potential has been underexplored and underutilized. We highlight the importance of the impacts of regulations for investments in modern biotechnology and argue that improvements are possible via international harmonization of approval processes. This development is urgently needed for improving sustainable development. Policy makers in the European Union (EU) in particular are challenged to rethink their approach to regulating modern biotechnology as their decisions have far ranging consequences beyond the boundaries of the EU and they have the power to influence international policies.


2021 ◽  
Author(s):  
Jaime G. Lopez ◽  
Mohamed S. Donia ◽  
Ned S. Wingreen

AbstractPlasmids are autonomous genetic elements that can be exchanged between microorganisms via horizontal gene transfer (HGT). Despite the central role they play in antibiotic resistance and modern biotechnology, our understanding of plasmids’ natural ecology is limited. Recent experiments have shown that plasmids can spread even when they are a burden to the cell, suggesting that natural plasmids may exist as parasites. Here, we use mathematical modeling to explore the ecology of such parasitic plasmids. We first develop models of single plasmids and find that a plasmid’s population dynamics and optimal infection strategy are strongly determined by the plasmid’s HGT mechanism. We then analyze models of co-infecting plasmids and show that parasitic plasmids are prone to a “tragedy of the commons” in which runaway plasmid invasion severely reduces host fitness. We propose that this tragedy of the commons is averted by selection between competing populations and demonstrate this effect in a metapopulation model. We derive predicted distributions of unique plasmid types in genomes—comparison to the distribution of plasmids in a collection of 17,725 genomes supports a model of parasitic plasmids with positive plasmid–plasmid interactions that ameliorate plasmid fitness costs or promote the invasion of new plasmids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgios Chondrogiannis ◽  
Shirin Khaliliazar ◽  
Anna Toldrà ◽  
Pedro Réu ◽  
Mahiar M. Hamedi

AbstractEnzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests. However, ACP inhibits DNA amplification which makes its integration difficult. Heat is commonly used to inactivate ACP, but it can be challenging to integrate heating into point-of-care devices. Here, we use recombinase polymerase amplification (RPA) together with ACP, and show that when ACP is immobilized on nitrocellulose paper, it retains its enzymatic function and can easily and rapidly be activated using agitation. The nitrocellulose-bound ACP does, however, not leak into the solution, preventing the need for deactivation through heat or by other means. Nitrocellulose-bound ACP thus opens new possibilities for paper-based Point-of-Care (POC) devices.


Sign in / Sign up

Export Citation Format

Share Document