Intraoperative Assessment of Breast Cancer Margins ex vivo using Aqueous Quantum Dot-Functionalized Molecular Probes

2021 ◽  
Author(s):  
Giang Hoang Thuy Au
2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Giang H. T. Au ◽  
Wan Y. Shih ◽  
Wei-Heng Shih ◽  
Linette Mejias ◽  
Vanlila K. Swami ◽  
...  

Positive margins have been a critical issue that hinders the success of breast- conserving surgery. The incidence of positive margins is estimated to range from 20% to as high as 60%. Currently, there is no effective intraoperative method for margin assessment. It would be desirable if there is a rapid and reliable breast cancer margin assessment tool in the operating room so that further surgery can be continued if necessary to reduce re-excision rate. In this study, we seek to develop a sensitive and specific molecular probe to help surgeons assess if the surgical margin is clean. The molecular probe consists of the unique aqueous quantum dots developed in our laboratory conjugated with antibodies specific to breast cancer markers such as Tn-antigen. Excised tumors from tumor-bearing nude mice were used to demonstrate the method. AQD-Tn mAb probe proved to be sensitive and specific to identify cancer area quantitatively without being affected by the heterogeneity of the tissue. The integrity of the surgical specimen was not affected by the AQD treatment. Furthermore, AQD-Tn mAb method could determine margin status within 30 minutes of tumor excision, indicating its potential as an accurate intraoperative margin assessment method.


2021 ◽  
Vol 187 (1) ◽  
pp. 145-153
Author(s):  
Conor R. Lanahan ◽  
Bridget N. Kelly ◽  
Michele A. Gadd ◽  
Michelle C. Specht ◽  
Carson L. Brown ◽  
...  

Abstract Purpose Safe breast cancer lumpectomies require microscopically clear margins. Real-time margin assessment options are limited, and 20–40% of lumpectomies have positive margins requiring re-excision. The LUM Imaging System previously showed excellent sensitivity and specificity for tumor detection during lumpectomy surgery. We explored its impact on surgical workflow and performance across patient and tumor types. Methods We performed IRB-approved, prospective, non-randomized studies in breast cancer lumpectomy procedures. The LUM Imaging System uses LUM015, a protease-activated fluorescent imaging agent that identifies residual tumor in the surgical cavity walls. Fluorescent cavity images were collected in real-time and analyzed using system software. Results Cavity and specimen images were obtained in 55 patients injected with LUM015 at 0.5 or 1.0 mg/kg and in 5 patients who did not receive LUM015. All tumor types were distinguished from normal tissue, with mean tumor:normal (T:N) signal ratios of 3.81–5.69. T:N ratios were 4.45 in non-dense and 4.00 in dense breasts (p = 0.59) and 3.52 in premenopausal and 4.59 in postmenopausal women (p = 0.19). Histopathology and tumor receptor testing were not affected by LUM015. Falsely positive readings were more likely when tumor was present < 2 mm from the adjacent specimen margin. LUM015 signal was stable in vivo at least 6.5 h post injection, and ex vivo at least 4 h post excision. Conclusions Intraoperative use of the LUM Imaging System detected all breast cancer subtypes with robust performance independent of menopausal status and breast density. There was no significant impact on histopathology or receptor evaluation.


Author(s):  
Lisa Agnello ◽  
Silvia Tortorella ◽  
Annachiara d’Argenio ◽  
Clarissa Carbone ◽  
Simona Camorani ◽  
...  

Abstract Background Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. Methods Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. Results We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. Conclusions Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


Author(s):  
Freja Albjerg Venning ◽  
Kamilla Westarp Zornhagen ◽  
Lena Wullkopf ◽  
Jonas Sjölund ◽  
Carmen Rodriguez-Cupello ◽  
...  

Abstract Background Cancer-associated fibroblasts (CAFs) comprise a heterogeneous population of stromal cells within the tumour microenvironment. CAFs exhibit both tumour-promoting and tumour-suppressing functions, making them exciting targets for improving cancer treatments. Careful isolation, identification, and characterisation of CAF heterogeneity is thus necessary for ex vivo validation and future implementation of CAF-targeted strategies in cancer. Methods Murine 4T1 (metastatic) and 4T07 (poorly/non-metastatic) orthotopic triple negative breast cancer tumours were collected after 7, 14, or 21 days. The tumours were analysed via flow cytometry for the simultaneous expression of six CAF markers: alpha smooth muscle actin (αSMA), fibroblast activation protein alpha (FAPα), platelet derived growth factor receptor alpha and beta (PDGFRα and PDGFRβ), CD26/DPP4 and podoplanin (PDPN). All non-CAFs were excluded from the analysis using a lineage marker cocktail (CD24, CD31, CD45, CD49f, EpCAM, LYVE-1, and TER-119). In total 128 murine tumours and 12 healthy mammary fat pads were analysed. Results We have developed a multicolour flow cytometry strategy based on exclusion of non-CAFs and successfully employed this to explore the temporal heterogeneity of freshly isolated CAFs in the 4T1 and 4T07 mouse models of triple-negative breast cancer. Analysing 128 murine tumours, we identified 5–6 main CAF populations and numerous minor ones based on the analysis of αSMA, FAPα, PDGFRα, PDGFRβ, CD26, and PDPN. All markers showed temporal changes with a distinct switch from primarily PDGFRα+ fibroblasts in healthy mammary tissue to predominantly PDGFRβ+ CAFs in tumours. CD26+ CAFs emerged as a large novel subpopulation, only matched by FAPα+ CAFs in abundance. Conclusion We demonstrate that multiple subpopulations of CAFs co-exist in murine triple negative breast cancer, and that the abundance and dynamics for each marker differ depending on tumour type and time. Our results form the foundation needed to isolate and characterise specific CAF populations, and ultimately provide an opportunity to therapeutically target specific CAF subpopulations.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
L Eijkenboom ◽  
V Palacio-Castañeda ◽  
F A Groenman ◽  
D D M Braat ◽  
C C M Beerendonk ◽  
...  

Abstract Study question Is it possible to eradicate cancer cells from ovarian cortex by using tumour-specific designed ankyrin repeat protein (DARPin)-toxin fusion proteins, without compromising the ovarian tissue? Summary answer Purging ovarian cortex ex vivo from experimentally induced breast cancer tumour foci is possible by tumour-targeted DARPin-toxin fusion proteins trough inhibition of protein synthesis. What is known already Ovarian tissue cryopreservation and autotransplantation is a successful technique for fertility restoration in cancer patients. The procedure is not without risk since malignant cells may still be present in the graft. Procedures to detect cancer cells render the tissue fragment useless for autotransplantation. Strategies to circumvent this problem such as in vitro maturation of follicles or the construction of artificial ovaries are pursued but are still experimental. Alternatively, we have shown ex vivo purging of ovarian cortex is possible by elimination of rhabdomyosarcoma after treatment with verteporfin. This allows treatment of cortex fragments before autotransplantation without compromising ovarian tissue integrity. Study design, size, duration Human ovarian cortex fragments harbouring breast cancer tumour foci were exposed for 24 h to DARPins fused to the translocation and catalytic domain of Pseudomonas aeruginosa exotoxin A (DARPin-toxin fusion proteins) targeting EpCAM or HER2. After treatment with the DARPin-toxin fusion proteins the tissue was cultured for an additional 6 days to allow any remaining tumour cells to form foci. In addition, the functional integrity of the ovarian tissue was analysed after purging. Participants/materials, setting, methods Breast cancer cell lines expressing different levels of EpCAM and HER2 were introduced in human ovarian tissue to form tumour foci. After purging with DARPin-toxin fusion proteins, the presence of any remaining cancer cells in the tissue was analysed with (immuno)histochemistry and RT-qPCR. Possible detrimental effects on the viability of ovarian cortex and follicles were determined by (immuno)histology, a follicular viability assay and an assay to determine the in vitro growth capacity of small follicles. Main results and the role of chance Ovarian cortex harbouring EpCAM-positive breast cancer cells showed a significant decrease in the number of tumour foci after treatment with the EpCAM-targeted DARPin-toxin fusion proteins. Although exposure to the EpCAM-specific DARPin had no effect on morphology or viability of follicles, a decrease in oocyte viability after in vitro growth experiments was observed, presumably due to low level expression of EpCAM on oocytes. In contrast to the EpCAM-specific DARPin-toxin fusion protein, the DARPin-toxin fusion protein targeting HER2 had no detrimental effects on morphology, viability or in vitro growth of follicles while foci of HER2-positive breast cancer cells were severely affected as indicated by the presence of apoptotic bodies, tumour cell remnants and the absence of viable tumour cells. The histological results after purging with the HER2-specific DARPin-toxin fusions proteins were confirmed by RT-qPCR, showing a decrease to basal levels of HER2 mRNA in the ovarian cortex tissue. Limitations, reasons for caution The effect of DARPin-toxin fusion proteins depends heavily on the expression of their target on the cancer cell. The target protein should not be expressed by ovarian cortex as this may lead to tissue damage. The functional integrity of ovarian cortex after the treatment requires further investigation in vivo. Wider implications of the findings Purging metastases from ovarian cortex without harming ovarian tissue is possible by targeting tumour specific surface expressed antigens with DARPin-toxin fusion proteins. Purging ovarian cortex tissue with DARPin-toxin fusion proteins provides a feasible therapeutic strategy to prevent reintroduction of cancer by autotransplantation in case of malignancies expressing tumour-specific surface markers. Trial registration number not applicable


Author(s):  
Lorela Ciraku ◽  
Rebecca A. Moeller ◽  
Emily M. Esquea ◽  
Wiktoria A. Gocal ◽  
Edward J. Hartsough ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document