scholarly journals The Effect of Bed Catalyst Design Variation on Catalytic Converter against Exhaust Emission Level of Carbon Monoxide (CO) and Hydrocarbon (HC) in Gasoline Engine

2018 ◽  
Vol 2 (2) ◽  
pp. 64-73
Author(s):  
Riky Arianto ◽  
Imam Muda Nauri
2014 ◽  
Vol 628 ◽  
pp. 249-252
Author(s):  
Jun Ji Li

The control of automobile exhaust emission has become one of the most important technologies for a modern vehicles. Catalytic conversion technology of three-way catalytic converter in the outer purification system is very mature and stable, which has been the first choice of exhaust emission control technology in China. The organic combination of the purification systems outside and inside machine can fully improve the performance and the fuel economy of vehicles on the basis of low emission levels.


2011 ◽  
Vol 130-134 ◽  
pp. 1749-1752
Author(s):  
Xing Bo Yuan ◽  
Zhi Jun Li ◽  
Shao Shu Chen ◽  
Ying Zhang

Lean-burn engines operate at a very lean air-to-fuel (A/F) ratio under light-load and part-load regions, in order to analyze the effect of engine speed and load on the BSFC (Break Specific Fuel Consumption) and exhaust emission of Lean-burn engine, an experimental research was conducted on a 4 cylinder lean-burn gasoline engine using different A/F ratios. The results show that the CO emission level decrease significantly, HC emission level becomes lower at the same A/F ratio, while the NOx emission increases, hence, advanced technologies are needed to carry out the NOx storage and purge operations in the lean-burn engines. Additionally, the experiment also reveals that the BSFC becomes lower as the engine speed and load increase.


2014 ◽  
Vol 699 ◽  
pp. 648-653 ◽  
Author(s):  
Bahaaddein K.M. Mahgoub ◽  
Suhaimi Hassan ◽  
Shaharin Anwar Sulaiman

In this review, a series of research papers on the effects of hydrogen and carbon monoxide content in syngas composition on the performance and exhaust emission of compression ignition diesel engines, were compiled. Generally, the use of syngas in compression ignition (CI) diesel engine leads to reduce power output due to lower heating value when compared to pure liquid diesel mode. Therefore, variation in syngas composition, especially hydrogen and carbon monoxide (Combustible gases), is suggested to know the appropriate syngas composition. Furthermore, the simulated model of syngas will help to further explore the detailed effects of engine parameters on the combustion process including the ignition delay, combustion duration, heat release rate and combustion phasing. This will also contribute towards the efforts of improvement in performance and reduction in pollutants’ emissions from CI diesel engines running on syngas at dual fuel mode. Generally, the database of syngas composition is not fully developed and there is still room to find the optimum H2 and CO ratio for performance, emission and diesel displacement of CI diesel engines.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 173 ◽  
Author(s):  
Lei Meng ◽  
Xiaofeng Wang ◽  
Chunnian Zeng ◽  
Jie Luo

The accurate air-fuel ratio (AFR) control is crucial for the exhaust emission reduction based on the three-way catalytic converter in the spark ignition (SI) engine. The difficulties in transient cylinder air mass flow measurement, the existing fuel mass wall-wetting phenomenon, and the unfixed AFR path dynamic variations make the design of the AFR controller a challenging task. In this paper, an adaptive AFR regulation controller is designed using the feedforward and feedback control scheme based on the dynamical modelling of the AFR path. The generalized predictive control method is proposed to solve the problems of inherent nonlinearities, time delays, parameter variations, and uncertainties in the AFR closed loop. The simulation analysis is investigated for the effectiveness of noise suppression, online prediction, and self-correction on the SI engine system. Moreover, the experimental verification shows an acceptable performance of the designed controller and the potential usage of the generalized predictive control in AFR regulation application.


Author(s):  
Christopher R. Stoos ◽  
Alexander Guliaeff

This paper describes the development, testing, and application of a low emissions upgrade kit for 1.5 MW EMD GP20D locomotives. Low emissions development focused on changes to fuel injection timing combined with the application of crank case ventilation system (CCV) and catalyzed diesel particulate filters (DPF). Composed of a porous cordierite ceramic material, the diesel particulate filters are specifically designed for entrapment of diesel particulates while allowing exhaust gases to flow through. Furthermore, the filters are coated with a proprietary catalyzed washcoat that promotes the oxidation of soot within the exhaust gas temperature range observed under normal engine operation. In addition to the low temperature oxidation of soot, the catalyzed filter also reduces carbon monoxide and unburned hydrocarbons. The test locomotive used for this development, which is owned by CIT Rail, was powered by a recently rebuilt Caterpillar 3516B engine with a rated power of 1.5 MW (2,000 HP). Baseline exhaust emission testing was performed, followed by low emissions retrofit development. In combination with the CCV and new fuel injection calibrations, the DPF system netted significant emissions reductions. The result of the final low emissions upgrade kit was an EPA Tier 1+ certification, with emissions levels that were below EPA Tier 3 locomotive switch cycle standards for oxides of nitrogen (NOx) and below EPA Tier 4 switch cycle standards for hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM), and smoke.


2021 ◽  
Author(s):  
Qingsong Zuo ◽  
Xiaomei Yang ◽  
Bin Zhang ◽  
Qingwu Guan ◽  
Zhuang Shen ◽  
...  

Abstract Improving the flow field uniformity of catalytic converter can promote the catalytic conversion of NO to NO2. Firstly, the physical and mathematical models of improved catalytic converter are established, and its accuracy is verified by experiments. Then, the NO catalytic performance of standard and improved catalytic converters is compared, and the influences of structural parameters on its performance are investigated. The results showed that: (1) The gas uniformity, pressure drop and NO conversion rate of the improved catalytic converter are increased by 0.0643, 6.78% and 7.0% respectively. (2) As the cell density combination is 700 cpsi/600 cpsi, NO conversion rate reaches the highest, 73.7%, and the gas uniformity is 0.9821. (3) When the tapered height is 20 mm, NO conversion rate reaches the highest, 72.4%, the gas uniformity is 0.9744. (4) When the high cell density radius is 20 mm, NO conversion rate reaches the highest, 72.1%, the gas uniformity is 0.9783. (5) When the tapered end face radius is 20 mm, NO conversion rate reaches the highest, 72.0%, the gas uniformity is 0.9784. The results will provide a very important reference value for improving NO catalytic and reducing vehicle emission.


Sign in / Sign up

Export Citation Format

Share Document