scholarly journals Screening of Three Different Alleles of mtDNA (G709A, G3496T, A3537G) in Subpopulation of UKM Students

2018 ◽  
Vol 5 (1) ◽  
pp. 37-40
Author(s):  
Seri Mirianti Ishar ◽  
Jeyaganesan Pillay a/l Balaraman ◽  
Muhammad Jefri Mohd Yusof ◽  
Khairul Osman ◽  
Lee Loong Chuen

Human DNA consists of nucleus DNA (nDNA) and mitochondrial DNA (mtDNA). Both are valuable in medicine and forensic genetics but in this project, single nucleotide polymorphisms (SNPs) in mtDNA are used to trace the mutation occurred. Mutations in the sequence of alleles can lead to haplogroup variation and also certain diseases. The purpose of this study is to screen of mutations on alleles G709A, G3496T, and A3537G in Malay population of The National University of Malaysia (UKM) students. These SNPs lie in the ND1 (nitrogen dehydrogenase subunit 1) coding region, and the reports state that these three alleles are prone to mutate. From MitoMap Web site, the mutations of these alleles are reported to have potential in causing several diseases with the collaboration of other SNPs mutation. Allele G709A is reported to have an association with hearing loss and Leber Hereditary Optic Neuropathy (LHON) while allele G3496T is associated to LHON only. Allele A3537G is related to diabetes. A total of 100 DNA samples were collected from Malay students of UKM and preserved on FTA card to be purified later. The concentration of the DNA on the purified FTA card was between 10μM to 20μM. An attempt was made by amplifying those three loci from the genomic DNA. The amplified product was detected and separated using 1% gel electrophoresis. Before sequencing, the PCR products were visualized under UV light using gel documentation system. All PCR products were sequenced to detect the mutation on every single position chosen. From the alignment of sequencing results, allele G709A and allele G3496T showed no mutation. Meanwhile four samples from alleles A3537G has the mutation. From the results obtained, it seems that mutations are rare in all selected alleles. It is recommended to increase the sample size and alleles selected in the future to increase the strength of the study. This study also should be applied to other populations in Malaysia such as Chinese and Indian.  

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 37-37
Author(s):  
Andrea N DeCarlo ◽  
Keelee J McCarty ◽  
Sarah K Richey ◽  
Nathan Long ◽  
Scott Pratt

Abstract Detrimental effects to male reproductive physiology have been observed due to changes in prolactin (PRL) serum concentration. Regulation of PRL by dopamine binding to the dopamine type-2 receptor (DRD2) is well defined and associations between male physiology and single nucleotide polymorphisms (SNPs) within the DRD2 gene have been observed. The objective of the study was to evaluate association of a DRD2 SNP to PRL protein expression in bulls. Testis and epididymis were collected from bulls grazing a forage containing or lacking a dopamine agonist at the end of a 126 d study (n = 14). Bovine pituitaries (n = 587) were collected randomly over 3 mo from a local abattoir which processes cull cows and bulls. Sex of pituitaries was verified (n = 259 males) by duplex PCR for amplification of SRY and b-actin followed by Southern blotting of PCR products for selection of male. Prolactin protein expression was assessed in testis, epididymis, and pituitary by western blotting. Expression of PRL protein was below detection range in reproductive tissues but was present in pituitary, therefore experiments continued in pituitary. Restriction fragment length polymorphism genotyping was performed on pituitaries by amplification of the DRD2 SNP region followed by digestion with a Tfil enzyme. Digested of products produced 3,2, or 1 band (AG, AA, GG, respectively). A subset of male pituitaries was blotted by slot blot manifold and PRL protein expression assessed by immunodetection and densitometry analysis normalized to GAPDH expression. Pituitary genotype distribution was 17.4% AA (n = 16), 63% AG (n = 58), and 19.6% GG (n = 18). Prolactin protein expression in the pituitary was similar across genotype (P = 0.23). These findings indicate that the DRD2 SNP has no genotypic effect on PRL protein expression in bovine pituitary.


2004 ◽  
Vol 1 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Hao Gang-Ping ◽  
Wu Zhong-Yi ◽  
Chen Mao-Sheng ◽  
Cao Ming-Qing ◽  
Dominique Brunel ◽  
...  

AbstractThe levels of drought tolerance and nucleotide polymorphism at the CBF4 locus were examined in a world-wide sample of 17 core accessions of Arabidopsis thaliana. The results showed that different accessions exhibited considerable differences in adaptation to drought stress. Compared with Columbia accession, the frequency of nucleotide polymorphism at the CBF4 locus of 25av, 203av and 244av accessions, including single nucleotide polymorphism (SNP) and insertion/deletion (Indel), was high, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. No significance in all regions of Tajima's D test indicated that the neutral mutation hypothesis could explain the nucleotide polymorphism in this CBF4 gene region. The higher polymorphism was the result of purification selection. Nucleotide polymorphism in the non-coding region was three times higher than in the coding region. This might indicate a recent relaxation of selection pressures on the non-coding region of CBF4 gene. In the coding region of CBF4, SNP frequency was 1 SNP per 96.4 bp and one non-synonymous mutation was detected from 25av, 203av and 244av accessions: the amino acid variation gly↔val at position 205, caused by the nucleotide variation G↔T at position 1034 (corresponding to the nucleotide at position 19 696 of GenBank accession no. AB015478 as 1). Furthermore, four differential SNPs were discovered in haplotype 6 constituted by 203av, one of them located in the 3′ non-coding region (A↔C at position 1106) and the others in the 5′ non-coding region (A↔G, A↔C and G↔A at positions 27, 129 and 171, respectively). The drought tolerance assay indicated that accession 203av was the best at tolerating water deficiency. We propose that haplotype 6 is consistent with its drought tolerance.


2016 ◽  
Vol 10 (1) ◽  
pp. 37-41
Author(s):  
Fatima Abood Chaloob

Infection with hepatitis C virus (HCV) imposes a global challenge with over 180 million cases worldwide. Only few patients spontaneously had their virus neutralized, while most patients develop chronic HCV infection. This implies a key role of genetic factors in viral clearance or persistence. The current study aimed at clarifying the effect of certain single nucleotide polymorphisms (SNPs) on individual's susceptibility to HCV infection.  A total of 60 patients with confirmed HCV infection and 35 apparently healthy individuals were enrolled in this study. Blood sample was obtained from each participant, from which DNA was extracted. The JAK1gene was amplified with conventional PCR technique using three sets of primers targeting three SNPs in this gene: rs2780895, rs4244165 and rs17127024. Restriction fragment length polymorphism (RFLP) was used for genotyping of PCR products. Each of rs2780895 and rs17127024 had two genotypes in both patients and controls, however, only the heterozygous genotype of the SNP rs2780895 (CT) significantly associated with the susceptibility to HCV. The SNP rs4244165 appeared in only with homozygous wild genotype (GG) in both patients and controls. It can be concluded that allele T of the SNP rs2780895 could be considered as a risk factor for infection with HCV


2009 ◽  
Vol 49 (8) ◽  
pp. 675 ◽  
Author(s):  
N. L. Feeley ◽  
K. A. Munyard

The aim of this study was to determine if any correlation exists between melanocortin-1 receptor (MC1R) polymorphisms and skin and fibre colour in alpacas. Primers capable of amplifying the entire alpaca MC1R gene were designed from a comparative alignment of Bos taurus and Mus musculus MC1R gene sequences. The complete MC1R gene of 41 alpacas exhibiting a range of fibre colours, and which were sourced from farms across Australia, was sequenced from PCR products. Twenty-one single nucleotide polymorphisms were identified within MC1R. Two of these polymorphisms (A82G and C901T) have the potential to reduce eumelanin production by disrupting the activity of MC1R. No agreement was observed between fibre colour alone and MC1R genotype in the 41 animals in this study. However, when the animals were assigned to groups based on the presence or absence of eumelanin in their fibre and skin, only animals that had at least one allele with the A82/C901 combination expressed eumelanin. We propose that A82/C901 is the wild-type dominant ‘E’ MC1R allele, while alpacas with either G82/T901 or G82/Y901 are homozygous for the recessive ‘e’ MC1R allele and are therefore unable to produce eumelanin.


2001 ◽  
Vol 47 (8) ◽  
pp. 1373-1377 ◽  
Author(s):  
Tony M Hsu ◽  
Scott M Law ◽  
Shenghui Duan ◽  
Bruce P Neri ◽  
Pui-Yan Kwok

Abstract Background: The PCR-Invader® assay is a robust, homogeneous assay that has been shown to be highly sensitive and specific in genotyping single-nucleotide polymorphism (SNP) markers. In this study, we introduce two changes to improve the assay: (a) we streamline the PCR-Invader method by assaying both alleles for each SNP in one reaction; and (b) we reduce the cost of the method by adopting fluorescence polarization (FP) as the detection method. Methods: PCR product was incubated with Invader oligonucleotide and two primary probes at 93 °C for 5 min. Signal probes corresponding to the cleaved flaps of the primary probes [labeled with fluorescein and 6-carboxytetramethylrhodamine (TAMRA) dye] and Cleavase® VIII enzyme (a flap endonuclease) were then added to the mixture. This reaction mixture was incubated at 63 °C for 5 min. FP measurements were made with a fluorescence plate reader. Results: Eighty-eight individuals were genotyped across a panel of 10 SNPs, using PCR product as template, for a total of 880 genotypes. An average “no call” rate of 3.2% was observed after first round of experiments. PCR products were remade in those samples that failed to produce any genotype in the first round, and all gave clear-cut genotypes. When the genotypes determined by the PCR-Invader assay and template-directed dye-terminator incorporation assay with FP were compared, they were in 100% concordance for all SNP markers and experiments. Conclusions: The improvements introduced in this study make PCR-Invader assay simpler and more cost-effective, and therefore more suitable for high-throughput genotyping.


2011 ◽  
Vol 300 (4) ◽  
pp. H1530-H1535 ◽  
Author(s):  
Carol Moreno ◽  
Jan M. Williams ◽  
Limin Lu ◽  
Mingyu Liang ◽  
Jozef Lazar ◽  
...  

Transfer of chromosome 13 from the Brown Norway (BN) rat onto the Dahl salt-sensitive (SS) genetic background attenuates the development of hypertension, but the genes involved remain to be identified. The purpose of the present study was to confirm by telemetry that a congenic strain [SS.BN-(D13Hmgc37-D13Got22)/Mcwi, line 5], carrying a 13.4-Mb segment of BN chromosome 13 from position 32.4 to 45.8 Mb, is protected from the development of hypertension and then to narrow the region of interest by creating and phenotyping 11 additional subcongenic strains. Mean arterial pressure (MAP) rose from 118 ± 1 to 186 ± 5 mmHg in SS rats fed a high-salt diet (8.0% NaCl) for 3 wk. Protein excretion increased from 56 ± 11 to 365 ± 37 mg/day. In contrast, MAP only increased to 152 ± 9 mmHg in the line 5 congenic strain. Six subcongenic strains carrying segments of BN chromosome 13 from 32.4 and 38.2 Mb and from 39.9 to 45.8 Mb were not protected from the development of hypertension. In contrast, MAP was reduced by ∼30 mmHg in five strains, carrying a 1.9-Mb common segment of BN chromosome 13 from 38.5 to 40.4 Mb. Proteinuria was reduced by ∼50% in these strains. Sequencing studies did not identify any nonsynonymous single nucleotide polymorphisms in the coding region of the genes in this region. RT-PCR studies indicated that 4 of the 13 genes in this region were differentially expressed in the kidney of two subcongenic strains that were partially protected from hypertension vs. those that were not. These results narrow the region of interest on chromosome 13 from 13.4 Mb (159 genes) to a 1.9-Mb segment containing only 13 genes, of which 4 are differentially expressed in strains partially protected from the development of hypertension.


2008 ◽  
Vol 5 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Wang Xiao-Bo ◽  
Ma Chuan-Xi ◽  
Si Hong-Qi ◽  
He Xian-Fang

AbstractPolyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products. In this study, wheat PPO sequences (mRNA) were searched/BLASTed in the NCBI database and aligned using DNAMAN software. The results showed that wheat PPO genes could be divided into two clusters (I and II) and that three genes (‘i’) of cluster II seemed not to be located on chromosomes 2A and 2D. Ninety-four single nucleotide polymorphisms (SNPs) were detected between two haplotypes of the PPO gene on chromosome 2D. Eighty of these were found in the coding region (coding (c) SNPs) and 36 were non-synonymous cSNPs, which could affect the PPO amino acid sequence. Primers (STS-H) were designed at some non-synonymous cSNPs sites and were used to investigate the correlations between allelic variants and PPO activity of seeds – a total of 130 common wheat varieties were evaluated in 2 years. The results showed that STS-H could amplify a 460 bp DNA fragment in most cultivars with high PPO activity, while no PCR product was detected in most cultivars with low PPO activity. To improve the selection efficiency of a single dominance molecular marker, the multiplex polymerase chain reaction (PCR) system of STS-H and STS01 markers was also studied, based on the complementary between them.


Sign in / Sign up

Export Citation Format

Share Document