scholarly journals Protection of Mild Steel Corrosion in Sulphuric Acid Environment Using Wheat Starch

Author(s):  
Simeon C. Nwanonenyi ◽  
Okoro Ogbobe ◽  
Emeka Emmanuel Oguzie

The corrosion of mild steel in 0.5 M H2SO4acid solution and the inhibition process by wheat starch (WS) was investigated using weight loss and potentiodynamic polarization measurement techniques respectively. Gravimetric results revealed that there is significant reduction in the corrosion rate of mild steel in the presence of inhibited solution compared to blank solution, and also the inhibition efficiency was found to depend on the concentration of the WS. Data on potentiodynamic polarization results confirmed that WS exhibited mixed type inhibition behaviour, though the cathodic effect was more pronounced. The mode of WS adsorption on the corroding metal surface followed Langmuir isotherm model. In addition, the trend of inhibition efficiency with temperature, activation energy and heat of adsorption parameters revealed a strong interaction between the WS constituents and the corroding metal surface, thus indicating that WS lowered the corrosion process by blanketing the mild steel surface through chemical adsorption mechanism. The mechanism of inhibition was discussed in the light of the chemical structure of starch.

2011 ◽  
Vol 239-242 ◽  
pp. 1409-1413
Author(s):  
Hong Mei Wang ◽  
Ke Long Huang ◽  
Zhi Ping Zhu

The inhibiting behavior of 1-ethyl-3-butylbenzotriazolium ionic liquids,[C2Bt][Br] ,on mild steel corrosion in 5 wt.% HCl as corroding solution was investigated using weight loss,potentiodynamic polarization and electrochemical impedance measurements. The obtained results indicated that [C2Bt][Br] is a good inhibitor for the mild steel in 5 wt.% HCl solution. The inhibition efficiency increased with an increase of inhibitive concentration. Potentiodynamic polarization data indicated that the [C2Bt][Br] acted essentially as a mixed-type inhibitor. The electrochemical impedance study showed that corrosion inhibition took place by adsorption.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


Author(s):  
Lebe A. Nnanna ◽  
Wisdom O. John ◽  
Tochukwu E. Esihe ◽  
Kelechi C. Denkoro ◽  
Victor I. Okparaku ◽  
...  

Inhibition effect of Costusafer on mild steel in 0.5 M HCl was studied using gravimetric method at room temperature. It was found out that Costusafer inhibited the corrosion of mild steel in the acidic environment and that the efficiency of inhibition increased as the concentration of the inhibitor in the environment increased. The data was used to test different isotherms and it suited the Langmuir isotherm. A value of -15.995 kJmol-1 was gotten for the ∆Goads. This value showed that the extracts of Costusafer inhibited the corrosion process through physiosorption mechanism. The high value of inhibition efficiency of the extract as the concentration increased in rationalized in terms of the increase in herteroatoms, saponnins and tannins which are present in the extract.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 27
Author(s):  
Shaimaa B. Al-Bghdadi ◽  
Mahdi M. Hanoon ◽  
Jafer F. Odah ◽  
Lina M. Shaker ◽  
Ahmed A. Al-Amiery

A New benzylidene derivative namely benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), was successfully synthesized and characterized using Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance and elemental analysis (CHN) techniques. The inhibition efficiency of BPTA on mild steel corrosion in 1.0 N HCl was tested at various temperatures. The methodological work was achieved by gravimetric method complemented with morphological investigation. The concentrations of inhibitor were 0.1, 0.2, 0.3, 0.4 and 0.5 mM at the temperatures 303, 313, 323 and 333 K. The BPTA, molecules as become superior corrosion inhibitor with 92% inhibition efficiency of mild steel coupon in the acidic environment. The inhibition efficiency increased with increasing concentrations of BPTA and the excellent efficiency was performed with the 0.5 mM concentration and followed with 0.4 mM. In acidic environment, the 0.5 and 0.4 mM gave the optimum performance with weight loss technique and scanning electron microscopy analysis. On the other hand, the inhibition efficiency decreased with the increase of temperature. Results of BPTA indicated mixed type inhibitor and the adsorption on the mild steels surface obeys the Langmuir adsorption isotherm. It was found that the BPTA performance depend on the concentration and the solution temperature. Quantum chemical calculations have been done to correlate the electronic characteristics of BPTA with the corrosive inhibitive impact. Experimental and theoretical results are in good agreement.


2018 ◽  
Vol 34 (5) ◽  
pp. 2471-2476 ◽  
Author(s):  
Hamida Edan Salman ◽  
Asim A. Balakit ◽  
Ali Ahmed Abdulridha

A new aromatic Schiff base with azo linkage (AS) has been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The new compound (AS) has been evaluated as carbon steel corrosion inhibitor at different concentrations (0.005, 0.01, 0.02, 0.04 and 0.08 mM) and different temperatures (303 – 333 K). The corrosion inhibition efficiency was studied by potentiodynamic polarization and weight loss measurements. The effects of concentration and temperature on the inhibition efficiency were studied by potentiodynamic polarization studies, the results showed that increasing concentration of AS increases the inhibition efficiency while increasing the temperature decreases it, the highest corrosion inhibition efficiency, 93.9% was recorded with 0.08 mM of AS at 313 K in 1 M H2SO4. Weight loss measurements showed that the inhibition efficiency reached 97.1% in the presence of AS (0.08 mM) at 313 K. The adsorption process was found to obey Langmuir isotherm, and the adsorption thermodynamic parameters were studied. Scanning electron microscope (SEM) was used to confirm the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Demet Özkır

In this study, the relevance of a food dye, namely, Fast Green-FCF (FG-FCF), was surveyed as a new inhibitor for mild steel in HCl solution. This effect was specified by electrochemical impedance spectroscopy (EIS), one of the most widely used measurement techniques. As a result of the increment of the inhibitor concentration, it was seen that the values ​​of polarization resistance increased and covered the metal surface of FG-FCF like a blanket. Tests endorse that the FG-FCF is chemically adsorbed on mild steel surface, according to the Langmuir isotherm. With surface characteristic analyses, such as field emission scanning electron microscope (FESEM) and atomic force microscope (AFM), it was further determined that the metal surface in HCl of FG-FCF was protected. By applying the hydrogen gas evolution technique, FG-FCF has been proven to provide the lowest surface area with all inhibited solutions from the blank due to its strong adsorption to the metal surface. Finally, it has been clarified that FG-FCF can be practically used as a good corrosion inhibitor for mild steel with the supported results.


2016 ◽  
Vol 10 (4) ◽  
pp. 398 ◽  
Author(s):  
Abimbola Patricia Idowu Popoola ◽  
Cleophas Akintoye Loto ◽  
Chukwunonso Ezekiel Obi ◽  
Ekundayo Oluwademilade Jacob Fademi ◽  
Thomas Oluwafemi Makinwa ◽  
...  

2011 ◽  
Vol 8 (s1) ◽  
pp. S53-S60 ◽  
Author(s):  
M. Vishnudevan

The inhibition efficiency of mild steel corrosion in HCl acidic solution containing various concentrations of mixed inhibitors were evaluated by conducting Tafel polarization and electrochemical impedance studies. The mixed inhibitors used in this present investigation were trisodium citrate and sodium benzoate. In this present investigation 0.01 N to 0.1 N concentrations of HCl was used at 30°C. Sodium benzoate present in the mixed inhibitive system enhanced the inhibition efficiency through chemisorptions. The maximum inhibition efficiency ( 95.4%) was obtained for the mixed inhibitive system containing 0.05 M citrate and 0.5 M benzoate in 0.1 N HCl.


2019 ◽  
Vol 7 (2) ◽  
pp. 72-77
Author(s):  
M.B. Geetha ◽  
◽  
J. Sathish ◽  
S. Rajendran ◽  
◽  
...  

The formulation consisting of 100 ppm Thiourea, 25 ppm Zn2+ and 250 ppm of L-Phenylalanine has 95% corrosion inhibition efficiency with a synergistic effect among Thiourea, L-Phenylalanine and Zn2+ ions. Polarization study shows that this formulation as a mixed inhibitor. FTIR spectra exposed the presence of Fe2+-Thiourea, Fe2+-L-Phenylalanine complex and Zn(OH)2 in protective film. AFM study confirmed the metal surface smoothness following engrossed in the inhibitor and the presence of formed protective film on the metal surface.


Sign in / Sign up

Export Citation Format

Share Document