STATIC PERFORMANCE STUDY ON SLIDEABLE ALL BOLTED CONNECTION OF TRUSS TO SQUARE STEEL TUBE COLUMN

2018 ◽  
Author(s):  
Xuechun Liu ◽  
◽  
Xu Lu ◽  
Shuanghui Pu ◽  
Ailin Zhang ◽  
...  
2020 ◽  
Vol 214 ◽  
pp. 110655
Author(s):  
Peijun Wang ◽  
Lele Sun ◽  
Mei Liu ◽  
Boxun Zhang ◽  
Xianfeng Hu ◽  
...  

2011 ◽  
Vol 374-377 ◽  
pp. 2471-2479
Author(s):  
Rong Tang ◽  
Yun Zhou ◽  
Xue Song Deng ◽  
Shao Ming Lin

According to the philosophy of “partially weaken the core element of the BRB to protect the other part”, 12 specimens of the Triple Square Steel Tube Buckling-Restrained Brace (TSST-BRB) were designed with which the core element had notched. ABAQUS finite element method was used to investigate the performance of TSST-BRB with different notched kinds, number, length and depth of the core element. The analysis results indicated that the core element with annular notch was conducive to reduce the stress concentration of ends, and dissipate energy under tiny displacement. Two notches of the core element were better to reduce the peak stress of the notched segment and the stress concentration of ends. The length of notch should be controlled on 13.3%~20.0% of the length of core element. The energy dissipation capacity, yield displacement and yield capacity of the TSST-BRB were significantly influenced by the depth of notched core element. The depth of the notch should be controlled on 10%~23.3% of the thickness of core element.


2013 ◽  
Vol 671-674 ◽  
pp. 718-721
Author(s):  
Xin Zhao ◽  
Mai Wu ◽  
Dan Dan Kong ◽  
Nan Wu

All-bolted steel beam-to-column connections for concrete-filled square steel tube (CFST) have the advantages of industry manufacture, being constructed quickly and easily concreting. The new design all-bolted connection discussed in this paper has the construction details of Π-shape plate and high strength bolts which connect the steel beam and CFST column. In order to investigate the static performances and failure modes of this new all-bolted connection, a full three-dimension ANSYS finite element (FE) model of the connection subjected to montonic load is built up. The theoretical values and experimental results are very close, that verifies the rationality of the FE models and the analysis method in this research. Further the calculated results demonstrated the new bolted connections belong to typical semi-rigid connection and have the superior static resistance in stiffness, strength, and rotating capacity.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


2014 ◽  
Vol 578-579 ◽  
pp. 340-345
Author(s):  
Guo Chang Li ◽  
Bo Wen Zhu ◽  
Yu Liu

In this paper, using ABAQUS, 16 high-strength concrete filled high-strength square steel tube middle-long columns’ axial compression process were simulated. The load-deflection relationships were obtained and the new combination in improving the bearing capacity and plastic deformation has a great advantage. Realization of length variation slenderness ratio by changing the length of column, this paper also study the influence of slenderness ratio, the main parameters of the high-strength concrete filled high-strength square steel tube middle-long column. It is found that both bearing capacity and the plastic capacity are associated with slenderness ratio.


Author(s):  
Ming Li ◽  
Ming Zhao ◽  
Yuanqing Wang ◽  
Wei Tao ◽  
Shoukun Li ◽  
...  

2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


Sign in / Sign up

Export Citation Format

Share Document