scholarly journals White Matter Tract Neuroimaging and Serum Biomarker Analysis in Sports-related Concussion

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael J. McGill ◽  
Qiuting Wen ◽  
Ho-Ching Yang ◽  
Salman Shahid ◽  
Yu-Chien Wu

Background:  Traumatic brain injury (TBI) is a leading cause of death and disability throughout the world, estimated to carry an annual global incidence of over 27 million cases. Mild TBI (mTBI), commonly known as concussion, is the mildest form of TBI and accounts for roughly 90% of all head injuries. Sports-related concussion (SRC) contributes significantly to this statistic with millions of athletes sustaining high-impact injuries in contact sports such as football, soccer, and lacrosse. By examining the white-matter microstructure, diffusion tensor imaging (DTI) has shown excellent capabilities for detecting pathophysiologic changes after SRC and monitoring symptom progression. Biomarkers including neurofilament light (NfL) and tau have been implicated in SRC and may provide insight into the duration of post-concussive symptoms. At this time, very few studies have been published evaluating the relationship between these serum biomarkers and alterations to DTI metrics.     Methods:  In the present study, we examined the association between serum biomarkers NfL and tau to further understand the relationship between these biomarkers and neuroimaging findings seen with diffusion tensor imaging (DTI) after exposure to a sports-related concussive event.     Results:  Serum tau levels decreased significantly at the 24-48h post-injury time point compared to 6h post-injury. Serum tau levels then elevated significantly at the asymptomatic time point in comparison to the 24-48h post-injury time point. The serum tau level was significantly associated with higher mean diffusivity (MD) in the white-matter tracts. Serum NfL had minimal associations with white matter diffusion metrics.     Conclusion and Potential Impact:  This research serves to better inform future investigations into the relationship between DTI metrics and serum biomarkers in the context of mTBI and SRC. This information may contribute to the development of a simple bedside serum analysis with potential to offer tremendous insight into the comprehensive brain health of patients who are being evaluated for SRC, thereby streamlining the therapeutic process and providing more accessible healthcare to patients in locations where advanced imaging techniques are not readily accessible.  

2019 ◽  
Vol 5 (1) ◽  
pp. 59-64
Author(s):  
Jiefei Li ◽  
Le He ◽  
Yuqi Zhang

Objective: To explore the usefulness of multishot diffusion tensor imaging (DTI) for evaluating the neurological function of patients with spinal cord tumors Methods: Routine magnetic resonance imaging and multishot DTI were performed in five patients with spinal cord tumors. The values of fractional anisotropy (FA) and radial diffusivity (RD) were analyzed. Results: Multishot DTI of spinal cord tumors allowed for defining the margins of tumors and determining the relationship of tumors with the adjacent white matter structures of the spinal cord. Multishot DTI demonstrated significantly increased RD and decreased FA of spinal cord tumors compared with those of the normal spinal cord. Conclusions: Multishot DTI is a potentially useful modality for differentiating resectable tumors from nonresectable ones based on preoperative imaging alone as well as for differentiating intramedullary tumors from extramedullary ones. Further prospective studies are warranted to confirm these results.


2004 ◽  
Vol 10 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Emmanuelle Cassol ◽  
Jean-Philippe Ranjeva ◽  
Danielle Ibarrola ◽  
Claude Mékies ◽  
Claude Manelfe ◽  
...  

Our objectives were to determine the reproducibility of diffusion tensor imaging (DTI) in volunteers and to evaluate the ability of the method to monitor longitudinal changes occurring in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS). DTI was performed three-mo nthly for one year in seven MS patients: three relapsing-remitting (RRMS), three secondary progressive (SPMS) and one relapsing SP. They were selected with a limited cerebral lesion load. Seven age- and sex-matched controls also underwent monthly examinations for three months. Diffusivity and anisotropy were quantified over the segmented whole supratentorial white matter, with the indices of trace (Tr) and fractional anisotropy (FA). Results obtained in volunteers show the reproducibility of the method. Patients had higher trace and lower anisotropy than matched controls (P B-0.0001). O ver the follow-up, both Tr and FA indicated a recovery after the acute phase in RRMS and a progressive shift towards abnormal values in SPMS. A lthough this result is not statistically significant, it suggests that DTI is sensitive to microscopic changes occurring in tissue of normal appearance in conventional images and could be useful for monitoring the course of the disease, even though it was unable to clearly distinguish between the various physiopathological processes involved.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ran Zhang ◽  
Xiaowei Jiang ◽  
Miao Chang ◽  
Shengnan Wei ◽  
Yanqing Tang ◽  
...  

Abstract Objective Although many studies have shown that the corpus callosum (CC) may play an important role in bipolar disorder (BD) and suicide, the pathophysiological mechanism of BD underlying suicidal behavior is still unclear. This study aimed to explore the relationship between the CC, and BD and suicidal ideation using diffusion tensor imaging (DTI). Method A total of 203 participants (47 BD patients with suicidal ideation, 59 with BD without suicidal ideation, and 97 healthy controls [HC]) underwent DTI scanning at a single site. We examined the white matter integrity of the CC in the three groups. Results A comparison among groups showed that BD patients with suicidal ideation had significant lower fractional anisotropy (FA) values than those of BD without suicidal ideation and HCs in the body and genu of the CC, and FA values of BD without suicidal ideation were significantly lower than those of HCs. However, in the splenium of corpus callosum, no difference was found between BD without suicidal ideation and HCs. Conclusions Our findings add to the evidence suggesting that the CC plays a key role in BD with suicidal ideation, especially with respect to the role of the genu and body of the CC subserving emotion regulation.


2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


Sign in / Sign up

Export Citation Format

Share Document