scholarly journals The effect of sulodexide on placental mitochondria function in rats with experimental preeclampsia

2016 ◽  
Vol 62 (5) ◽  
pp. 572-576 ◽  
Author(s):  
T.A. Popova ◽  
V.N. Perfilova ◽  
G.A. Zhakupova ◽  
V.E. Verovsky ◽  
O.V. Ostrovskij ◽  
...  

Substitution of drinking water for 1.8% NaCl in pregnant rats caused a pronounced increase in arterial pressure by 24,3% and urinary protein by 117% to day 21 of pregnancy. State 4 respiration of isolated placental mitochondria in the group of negative control was 3- and 1.5-fold higher with malate/glutamate and succinate as substrates than in placental mitochondria isolated from uncomplicated pregnant animals. This led to a decrease of the respiratory control ratio. These results suggest that development of experimental preeclampsia is accompanied by mitochondrial dysfunction through uncoupling of oxidative phosphorylation. Daily administration of sulodexide to females with experimental preeclampsia (EP) per os at a dose of 30 LE during the whole period of gestation decreased manifestations of the disease as evidenced by a slight increase in blood pressure (by 8,6%) and less pronounces increase in urinary protein (by 58,9%). Sulodexide decreased development of mitochondrial dysfunction in EP rats as shown a decrease of non-stimulated ADP respiration with malate/glutamate and succinate (4.5- and 2.5-fold, respectively) as compared with the negative control group and the corresponding increase in the respiratory control ratio (2.5- and 1.5-fold, respectively). Thus, sulodexide reduces uncoupling of oxidative phosphorylation and enhances the functional activity of mitochondria in EP animals, possibly due to its antioxidant and endotelioprotective effects.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jian Cao ◽  
John A McClung ◽  
Shailendra P Singh ◽  
Lars Bellner ◽  
Maayan Waldman ◽  
...  

Introduction: Obesity and diabetes are associated with progressive cardiac fibrosis that, sequentially, results in diastolic dysfunction, reduced contractility, and ultimately heart failure. Contributing factors include hyperglycemia, insulin resistance, mitochondrial dysfunction, and a reduction in AMPK signaling. PGC-1α activates mitochondrial biogenesis and oxidative phosphorylation and is decreased in patients with diabetes mellitus (DM). We hypothesize that an epoxyeicosatrienoic acids (EETs) agonist (EET-A) will increase PGC-1α levels in a db mouse model of DM attenuate cardiomyopathy, and prevent heart failure. Methods: Db mice (4-wks), were allowed to acclimatize for 16-wks and were then divided into 3 treatment groups for an additional 16 wks: A) control, B) EET-A 1.5mg/100g BW 2 weeks and C) EET-A-Ln-PGC-1α shRNA. Ln-PGC-1α shRNA suppressed PGC-1α protein in heart tissue by 40-50%. Oxygen consumption (VO 2 ), and blood glucose was determined. Heart tissues were harvested to measure PGC-1α, HO-1, pAMPK, PGC-1α, echocardiographic fractional shortening, mitochondrial oxidative phosphorylation (OXPHOS) and mitofusion protein markers. Results: All mice developed heart failure by the end of 16 weeks and were characterized by a decrease in myocardial contractility, an increase in insulin resistance and blood pressure, decreased VO 2 , the appearance of mitochondria dysfunction and a decrease in AMPK and downstream PGC-1α signaling. Mice treated with EET-A demonstrated an increase in PGC-1α levels, improved mitochondrial function and oxidative phosphorylation (p<0.01 vs control), increased NO bioavailability (p<0.05 vs control), and normalization of glucose metabolism, insulin levels, VO 2 and LV systolic function (p<0.05 vs control). All of these findings were suppressed by PGC-1α inhibition which was accompanied by the onset of even more severe LV dysfunction than in the control group. Conclusion: Increased EET levels result in activation of PGC-1α-HO-1 which reverses diabetes induced insulin resistance, mitochondrial dysfunction, and cardiomyopathy. EET may have potential as a powerful agent for therapeutic application in the treatment of diabetic cardiomyopathy.


1988 ◽  
Vol 66 (3) ◽  
pp. 376-379 ◽  
Author(s):  
J. H. Thakar ◽  
M. N. Hassan

The catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) has been used to produce cardiac chemical sympathectomy as well as a model of parkinsonism. Several mechanisms have been proposed to explain its cytotoxicity, including the productions of quinones, hydrogen peroxide, and free radicals by autooxidation and the uncoupling of mitochondrial oxidative phosphorylation. We have observed that 6-OHDA at a concentration of 0.05 mM rapidly consumes oxygen from the mitochondrial incubation medium but does not affect oxidative phosphorylation in the mitochondria from rat striatum, cortex, and liver. At the higher concentration of 0.5 mM, 6-OHDA consumes all of the available oxygen from the incubation medium. Mitochondria exposed to this concentration of 6-OHDA show decreases in the respiratory control ratio and adenosine triphosphate synthesis as measured by the consumption ratio of ADP to oxygen. Thus, only the higher (0.5 mM) concentration of 6-OHDA, which produces anoxia in vitro, also causes mitochondrial damage.


1968 ◽  
Vol 46 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Klaus Wrogemann ◽  
M. C. Blanchaer

Mitochondria isolated from skeletal muscle and heart of normal Syrian hamsters and from hamsters of the BIO 14.6 myopathic strain aged 97–124 days were studied. Histological examination of the tissues and serum creatine phosphokinase determinations established that the disease was active in the dystrophic animals. In the mitochondrial isolation procedure the minced tissue was incubated before homogenization in a mannitol–sucrose–EDTA medium containing a proteinase (Nagarse). Polarographic estimations with pyruvate–malate as substrate, in the presence and absence of ADP, indicated that the rate of O2 uptake, ADP/O ratio, and respiratory control ratio (state 3 to 4 transition) of the heart mitochondria did not suffer significantly between the normal and myopathic groups. The findings with the skeletal muscle mitochondria were similar. L-α-Glycerophosphate oxidation also was not affected by the myopathy but the rate of NADH oxidation was 35% slower in the heart mitochondria of the BIO 14.6 strain.


1975 ◽  
Vol 21 (6) ◽  
pp. 877-883 ◽  
Author(s):  
G. Gordon Greer ◽  
F. H. Milazzo

The addition of Pseudomonas aeruginosa KCIIR LPS to respiring mitochondria stimulated the rate of substrate oxidation, reduced the respiratory control ratio, stimulated oxygen uptake in state 4, and released the inhibition imposed upon state 3 by atractyloside. It was concluded that LPS acted as an uncoupler of oxidative phosphorylation and that it produced effects similar to those observed with the classical uncoupler 2,4-dinitrophenol.


2004 ◽  
Vol 47 (6) ◽  
pp. 873-879 ◽  
Author(s):  
André Bellin Mariano ◽  
Leonardo Kovalhuk ◽  
Caroline Valente ◽  
Juliana Maurer-Menestrina ◽  
Adaucto Bellarmino Pereira-Netto ◽  
...  

A method for the isolation of coupled mitochondria from the callus of Araucaria angustifolia is described for the first time. Mitochondria were isolated from embryogenic callus of A. angustifolia. They were metabolically active, able to sustain oxidative phosphorylation as shown by respiratory control ratio values, which were about 2.4 when respiring on succinate as substrate. Oxygen uptake experiments, using freeze-thawed disrupted mitochondria, showed the presence of alternative rotenone-insensitive NAD(P)H dehydrogenases, which were stimulated by Ca2+. The procedure now described for the isolation of A. angustifolia mitochondria is an important new tool, allowing the investigation of mitochondrial bioenergetics and metabolism and physiology of plants.


1967 ◽  
Vol 45 (8) ◽  
pp. 1271-1278 ◽  
Author(s):  
Klaus Wrogemann ◽  
M. C. Blanchaer

Oxidative phosphorylation was studied in mitochondria isolated from the skeletal muscle of control and dystrophic mice of the Jackson Laboratory strain 129/Re, aged 32–104 days. The isolation procedure included a preliminary incubation of the muscle minced in a medium containing a proteinase (Nagarse) followed by gentle homogenization and differential centrifugation. Polarographic estimations in the presence and absence of adenosine diphosphate (ADP) indicated that the rate of oxygen uptake, ADP/0 ratio, respiratory control ratio, and phosphorylation rate were not significantly different in the mitochondria isolated from control and dystrophic mice. Bovine serum albumin increased the ADP/0 and respiratory control ratios, but the values for the control and dystrophic preparations again did not differ significantly in the presence of albumin.


2018 ◽  
Vol 31 (8) ◽  
pp. 814-820 ◽  
Author(s):  
Steven J. Enoch ◽  
Terry W. Schultz ◽  
Ioanna G. Popova ◽  
Krasimir G. Vasilev ◽  
Ovanes G. Mekenyan

2021 ◽  
Vol 14 (1) ◽  
pp. 8-13
Author(s):  
Reny Retnaningsih ◽  
Rani Safitri

Anemia is one of the epidemic health problems in society and the most common nutritional problem. The Moringa oleifera is rich in excellent dietary content and can complement the body's needs. This study aims to determine Moringa oilefera leaf extract's effectiveness in increasing hemoglobin levels in pregnant rats (Ratus norvegicus) with anemia. This paper used a true experimental research design with a pre-post test randomized control group design. This study utilized female rats (Ratus norvegicus), pregnant 8-12 weeks, weighing 200 grams. Experimental procedures were four treatments with three repetitions. Types of treatment were negative control and positive control (administration of Moringa oilefera leaf extract) at a dose of 0.18 g / head, 0.36 g / head, and 0.72 g/head. Analysis using one way ANOVA with an error rate of 0.05. The results showed p<0.005, which means a significant increase in hemoglobin levels in the group given the treatment of moringa leaf extract at a dose of 0.72 g/head/day. The conclusion and suggestion from this research are public could get information about using natural materials as economically valuable drugs (back to nature)


Sign in / Sign up

Export Citation Format

Share Document