scholarly journals Machine Learning Versus Deep Learning Performances on the Sentiment Analysis of Product Reviews

2021 ◽  
Vol 11 (2) ◽  
pp. 103-109
Author(s):  
Pumrapee Poomka ◽  
◽  
Nittaya Kerdprasop ◽  
Kittisak Kerdprasop

At this current digital era, business platforms have been drastically shifted toward online stores on internet. With the internet-based platform, customers can order goods easily using their smart phones and get delivery at their place without going to the shopping mall. However, the drawback of this business platform is that customers do not really know about the quality of the products they ordered. Therefore, such platform service often provides the review section to let previous customers leave a review about the received product. The reviews are a good source to analyze customer's satisfaction. Business owners can assess review trend as either positive or negative based on a feedback score that customers had given, but it takes too much time for human to analyze this data. In this research, we develop computational models using machine learning techniques to classify product reviews as positive or negative based on the sentiment analysis. In our experiments, we use the book review data from amazon.com to develop the models. For a machine learning based strategy, the data had been transformed with the bag of word technique before developing models using logistic regression, naïve bayes, support vector machine, and neural network algorithms. For a deep learning strategy, the word embedding is a technique that we used to transform data before applying the long short-term memory and gated recurrent unit techniques. On comparing performance of machine learning against deep learning models, we compare results from the two methods with both the preprocessed dataset and the non-preprocessed dataset. The result is that the bag of words with neural network outperforms other techniques on both non-preprocess and preprocess datasets.

Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2019 ◽  
Vol 11 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Nimesh V Patel ◽  
Hitesh Chhinkaniwala

Sentiment analysis identifies users in the textual reviews available in social networking sites, tweets, blog posts, forums, status updates to share their emotions or reviews and these reviews are to be used by market researchers to do know the product reviews and current trends in the market. The sentiment analysis is performed by two methods. Machine learning approaches and lexicon methods which are also known as the knowledge base approach. These. In this article, the authors evaluate the performance of some machine learning techniques: Maximum Entropy, Naïve Bayes and Support Vector Machines on two benchmark datasets: the positive-negative dataset and a Movie Review dataset by measuring parameters like accuracy, precision, recall and F-score. In this article, the authors present the performance of various sentiment analysis and classification methods by classifying the reviews in binary classes as positive, negative opinion about reviews on different domains of dataset. It is also justified that sentiment analysis using the Support Vector Machine outperforms other machine learning techniques.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1570
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul ◽  
Phichai Youplao ◽  
Preecha Yupapin

The creation of the Internet of Things (IoT), along with the latest developments in wearable technology, has provided new opportunities in human activity recognition (HAR). The modern smartwatch offers the potential for data from sensors to be relayed to novel IoT platforms, which allow the constant tracking and monitoring of human movement and behavior. Recently, traditional activity recognition techniques have done research in advance by choosing machine learning methods such as artificial neural network, decision tree, support vector machine, and naive Bayes. Nonetheless, these conventional machine learning techniques depend inevitably on heuristically handcrafted feature extraction, in which human domain knowledge is normally limited. This work proposes a hybrid deep learning model called CNN-LSTM that employed Long Short-Term Memory (LSTM) networks for activity recognition with the Convolution Neural Network (CNN). The study makes use of HAR involving smartwatches to categorize hand movements. Using the study based on the Wireless Sensor Data Mining (WISDM) public benchmark dataset, the recognition abilities of the deep learning model can be accessed. The accuracy, precision, recall, and F-measure statistics are employed using the evaluation metrics to assess the recognition abilities of LSTM models proposed. The findings indicate that this hybrid deep learning model offers better performance than its rivals, where the achievement of 96.2% accuracy, while the f-measure is 96.3%, is obtained. The results show that the proposed CNN-LSTM can support an improvement of the performance of activity recognition.


2021 ◽  
pp. 1-28
Author(s):  
Aakanksha Sharaff ◽  
Ramya Allenki ◽  
Rakhi Seth

Sentiment analysis works on the principle of categorizing and identifying the text-based content and the process of classifying documents into one of the predefined classes commonly known as text classification. Hackers deploy a strategy by sending malicious content as an advertisement link and attack the user system to gain information. For protecting the system from this type of phishing attack, one needs to classify the spam data. This chapter is based on a discussion and comparison of various classification models that are used for phishing SMS detection through sentiment analysis. In this chapter, SMS data is collected from Kaggle, which is classified as ham or spam; while implementing the deep learning techniques like Convolutional Neural Network (CNN), CNN with 7 layers, and CNN with 11 layers, different results are generated. For evaluating these results, different machine learning techniques are used as a baseline algorithm like Naive Bayes, Decision Trees, Support Vector Machine (SVM), and Artificial Neural Network (ANN). After evaluation, CNN showed the highest accuracy of 99.47% as a classification model.


Author(s):  
Amit Purohit

Sentiment analysis is defined as the process of mining of data, view, review or sentence to Predict the emotion of the sentence through natural language processing (NLP) or Machine Learning Techniques. The sentiment analysis involve classification of text into three phase “Positive”, “Negative” or “Neutral”. The process of finding user Opinion about the topic or Product or problem is called as opinion mining. Analyzing the emotions from the extracted Opinions are defined as Sentiment Analysis. The goal of opinion mining and Sentiment Analysis is to make computer able to recognize and express emotion. Using social media, E-commerce website, movies reviews such as Face book, twitter, Amazon, Flipkart etc. user share their views, feelings in a convenient way. Sentiment analysis in a machine learning approach in which machines classify and analyze the human’s sentiments, emotions, opinions etc. about the products. Out of the various classification models, Naïve Bayes, Support Vector Machine (SVM) and Decision Tree are used maximum times for the product analysis. The proposed approach will do better result as compare to other machine learning techniques.


2019 ◽  
Vol 8 (3) ◽  
pp. 8428-8432

Due to the rapid development of the communication technologies and global networking, lots of daily human life activities such as electronic banking, social networks, ecommerce, etc are transferred to the cyberspace. The anonymous, open and uncontrolled infrastructure of the internet enables an excellent platform for cyber attacks. Phishing is one of the cyber attacks in which attackers open some fraudulent websites similar to the popular and legal websites to steal the user’s sensitive information. Machine learning techniques such as J48, Support Vector Machine (SVM), Logistic Regression (LR), Naive Bayes (NB) and Artificial Neural Network (ANN) were widely to detect the phishing attacks. But, getting goodquality training data is one of the biggest problems in machine learning. So, a deep learning method called Deep Neural Network (DNN) is introduced to detect the phishing Uniform Resource Locators (URLs). Initially, a feature extractor is used to construct a 30-dimension feature vector based on URL-based features, HTML-based features and domain-based features. These features are given as input to the DNN classifier for phishing attack detection. It consists of one input layer, multiple hidden layers and one output layer. The multiple hidden layers in DNN try to learn high-level features in an incremental manner. Finally, the DNN returns a probability value which represent the phishing URLs and legitimate URLs. By using DNN the accuracy, precision and recall of phishing attack detection is improved.


2021 ◽  
Vol 40 ◽  
pp. 03032
Author(s):  
Shweta Dhabekar ◽  
M. D. Patil

With the increase in E-Commerce businesses in the last decade,the sentiment analysis of product reviews has gained a lot of attention in linguistic research. In literature, the survey depicts the majority of the research done emphasizes on mere polarity identification of the reviews. The proposed system emphasized on classifying the sentiment polarity and the product aspect identification from the reviews. Proposed work experimented with traditional machine learning techniques as well as deep neural networks such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short Term Memory(LSTM) Networks. The proposed system gives a better understanding of these algorithms by comparing the outcomes. The Deep Learning approach in the proposed work successfully provides a mechanism which identifies the review polarity and intensity of the reviews and also analyses the short form words used by people in the reviews. The experimental results in this work, applied on amazon product dataset, shows that the LSTM model works the best for sentiment analysis and intensity of reviews with 93% accuracy. This research work also predicts polarity for short-form word reviews which is the common trend these days while writing the reviews.


Sign in / Sign up

Export Citation Format

Share Document