scholarly journals Antifungal activity of ethanolic extract of Sphaeranthus indicus Linn. against Dermatophytes and Candida species

Author(s):  
Preeja K. Sundaresan ◽  
Kala P. Kesavan

Background: Sphaeranthus indicus as an entire plant or the specific parts like roots, leaves, flowers are used for treating helminthiasis, jaundice, diabetes, dyspepsia, fever, cough, hernia, gastritis, hemorrhoids, migraine, leprosy and skin diseases. The objective of this study was to evaluate the antifungal activity of ethanolic extract of the whole plant Sphaeranthus indicus Linn. Methods: The antifungal activity of ethanolic extract of the whole plant Sphaeranthus indicus Linn was evaluated by incorporating the extract in Sabourauds dextrose agar. This property was studied in vitro using the ethanolic extract on Candida albicans, Microsporum gypseum, Trichophyton mentagrophytes and Epidermophyton floccosum by using Clotrimazole as standard drug.Results: This study revealed that the ethanolic extract of Sphaeranthus indicus is having good antifungal activity against Dermatophytes and Candida species. Conclusions: This study demonstrates the promising antifungal action of ethanolic extract of whole plant of Sphaeranthus indicus Linn. This feature can be exploited in the development of a newer antifungal agent from plant. 

Author(s):  
Dewi Safitri ◽  
Elin Yulinah Sukandar ◽  
Irda Fidrianny ◽  
Eriwan Susanto

Objective: This study aimed to look for new agents from extracted Indonesia herbs which have antifungal activity with better safety profile against Candida albicans, Microsporum gypseum, and Trichophyton mentagrophytes. Methods: Screening of eleven herbs was perform to determine the highest antifungal activity. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of selected extracts, rosemary (Rosmarinus officinalis) leaves, Java turmeric (Curcuma xanthorriza) rhizome, and ginger (Zingiber officinalis) rhizome; were determined by using microdilution and agar diffusion methods. Extracts were then combined to evaluate further activities. Selected extracts were fractionated by using liquid-liquid extraction, analyzed by TLC bioautography.Results: ethanolic extract of rosemary (Rosmarinus officinalis) leaves, Java turmeric (Curcuma xanthorriza) rhizome, and ginger (Zingiber officinalis) rhizome in combination showed the highest activity and synergistic interaction against Trichophyton mentagrophytes. There were several components from fractions were actively inhibiting corresponding fungi according to TLC bioautography method. Conclusion: ethanolic extracts of rosemary, Java turmeric, and ginger had the highest antifungal potency, both as extract and in combination comparable to ketoconazole as reference drug. These selected extracts are potential to be used as new antifungal agents.


Author(s):  
Preeja K. Sundaresan ◽  
Kala P. Kesavan

Background: Sphaeranthus indicus Linn is a widely used medicinal plant in Indian traditional system of medicine against human pathogens. Alarming bacterial resistance is urging scientist to search for newer anti-microbial substances from the medicinal plants. The objective of the study was to evaluate the antibacterial activity of ethanolic extract of the whole plant Sphaeranthus indicus Linn (Asteraceae).Methods: The antibacterial activity of ethanolic extract of whole plant of Sphaeranthus indicus Linn was done against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Staphylococcus aureus in Mueller Hinton Agar (MHA) and compared with ciprofloxacin as standard by disc diffusion method.Results: The study revealed that there was no zone of inhibition in doses of 100 mcg, 200 mcg and 300 mcg of ethanolic whole plant extract of Sphaeranthus indicus in MHA plates compared with ciprofloxacin 30 mcg.Conclusions: Ethanolic extract of Sphaeranthus indicus does not have antibacterial activity. Further studies are needed in different extracts and parts of the plant. Simultaneous studies can be done in different places to evaluate environmental factors and regional variations.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Francislene J. Martins ◽  
César A. Caneschi ◽  
Mônica P. Senra ◽  
Gustavo S. G. Carvalho ◽  
Adilson D. da Silva ◽  
...  

Nitrogenated heterocyclic compounds are present in both natural and synthetic drugs, and hexahydropyrimidine derivatives may prove to be efficient in treating dermatomycosis causing fungi. This study evaluated the antifungal activity of four hexahydropyrimidine derivatives against the dermatomycosis causing fungi. These derivatives were synthesized, characterized, and assessed in terms of their activity against Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Fusarium oxysporum, and Epidermophyton floccosum between concentrations 7.8 and 1,000 μg mL−1. Scanning electron micrographs were assessed for the active derivatives and reference drugs, and these micrographs revealed that new agents cause morphological changes in fungi. The derivatives HHP1, HHP3, and HHP4 revealed poor activity against the four fungal strains (MICs range 500–1000 μg mL−1). Compound HHP3 was found to be the best potential antifungal agent among those tested and was the most effective among all the active derivatives that caused morphological changes in the susceptible strains.


2009 ◽  
Vol 4 (9) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Karina E. Machado ◽  
Valdir Cechinel Filho ◽  
Rosana C. B. Cruz ◽  
Christiane Meyre-Silva ◽  
Alexandre Bella Cruz

Antifungal activities of Eugenia umbelliflora Berg. (Myrtaceae) were tested in vitro against a panel of standard and clinical isolates of human fungal pathogens (dermatophytes and opportunistic saprobes). Methanol extracts of leaves and fruits of E. umbelliflora were separately prepared and partitioned, to yield dichloromethane (DCM), ethyl acetate (EtOAc) and aqueous fractions (Aq). Three compounds (1-3) were obtained from the DCM extract using chromatographic procedures. Antifungal assays were performed using agar dilution techniques. Both extracts (fruits and leaves), their DCM and EtOAc fractions, and compound 2 (betulin and betulinic acid) presented selective antifungal activity against dermatophytes (Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Trichophyton mentagrophytes), with MIC values between 200 and 1000 μg/mL, and interestingly, inhibited 4/5 species with MIC values of ≤500 ≤g/mL. The aqueous fractions of fruits and leaves, and compounds 1 (α, β amyrin) and 3 (taraxerol) were inactive up to the maximum concentrations tested (1000 μg/mL).


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 737
Author(s):  
Marina Pekmezovic ◽  
Melina Kalagasidis Krusic ◽  
Ivana Malagurski ◽  
Jelena Milovanovic ◽  
Karolina Stępień ◽  
...  

Novel biodegradable and biocompatible formulations of “old” but “gold” drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.


2012 ◽  
Vol 61 (12) ◽  
pp. 1704-1708 ◽  
Author(s):  
Rosana Serpa ◽  
Emanuele J. G. França ◽  
Luciana Furlaneto-Maia ◽  
Célia G. T. J. Andrade ◽  
Andréa Diniz ◽  
...  

Author(s):  
Divya Yada ◽  
T. Sivakkumar ◽  
M. Sudhakar

The current line of investigation was focused at perusing the presence of phytochemical constituents, investigation of total phenol and flavonoid content, the antioxidant potential of various extracts of Caralluma adscendens whole plant using various in-vitro assays. The dried plant powder was extracted with various solvents based on polarity (Pet ether, Chloroform, Ethyl acetate, Ethanol and Aqueous) by hot continuous extraction in Soxhlet's apparatus and Extracts were dried. Phytoconstituents present in each extract was examined by performing preliminary phytochemical screening. Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Antioxidant potential for crude extracts were studied by DPPH, nitric oxide scavenging and FRAP methods. The total phenolic content and flavonoid content of Ethanolic extract of plant was found to be 80.08±0.629mg and 70.88±1.170mg of GAE and Quercetin equivalents respectively. The Ethanolic extract exhibited potent antioxidant activity as determined by 2,2-diphenyl-1-picrylhydrazyl(DPPH), nitric oxide scavenging and ferric reducing antioxidant power assays(FRAP) than the other extracts. The IC50 values for the Ethanolic extract of Caralluma adscendens was found to be 214.765±0.224 µg/ml and 215.928±0.506µg/ml by DPPH and nitric oxide scavenging assays respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. S. Abu-Darwish ◽  
C. Cabral ◽  
I. V. Ferreira ◽  
M. J. Gonçalves ◽  
C. Cavaleiro ◽  
...  

Salvia officinalisL. (Lamiaceae) is a Mediterranean species, naturalized in many countries. In Jordan, it is used in traditional medicine as antiseptic, antiscabies, antisyphilitic, and anti-inflammatory, being frequently used against skin diseases. This study aimed the assessment of the antifungal and anti-inflammatory potential of its essential oils, and their cytotoxicity on macrophages and keratinocytes. The oils were investigated by gas chromatography and gas chromatography-mass spectrometry and the antifungal activity was evaluated against yeasts, dermatophyte andAspergillusstrains. Assessment of cell viability was made by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and thein vitroanti-inflammatory potential was evaluated by measuring nitric oxide production using lipopolysaccharide-stimulated mouse macrophages. The main compounds ofS. officinalisoils were 1,8-cineole (39.5–50.3%) and camphor (8.8–25.0%). The oils revealed antifungal activity against dermatophyte strains and significantly inhibited NO production stimulated by LPS in macrophages, without affecting cell viability, in concentrations up to 0.64 μL/mL. This is the first report addressing thein vitroanti-inflammatory potential ofS. officinalisoil. These findings demonstrated that bioactive concentrations ofS. officinalisoils do not affect mammalian macrophages and keratinocytes viability making them suitable to be incorporated in skin care formulations for cosmetic and pharmaceutical purposes.


Sign in / Sign up

Export Citation Format

Share Document