Curcumin alleviates LPS-induced retinal inflammation by inhibiting PI3k/Akt signaling pathway

2021 ◽  
Vol 2 (1) ◽  
pp. 6-13
Author(s):  
Yan Li ◽  
◽  
Xue Li ◽  
Shan-Bi Zhou ◽  
◽  
...  

AIM: To investigate whether the curcumin reduce retinal inflammation in animal model and human retinal pigment epithelium (ARPE)-19 cells. METHODS: In vivo, male C57/B6 mice received intraperitoneal injections of curcumin for 3d before intraperitoneal injection of lipopolysaccharide (LPS; 10 mg/kg) to induce retinal inflammation. 24h after LPS application, the mRNA levels of pro-inflammatory cytokines were detected by real-time polymerase chain reaction (RT-PCR). Concanavalin A lectin perfusion-labeling technique evaluated leukocyte adhesion to the retinal vasculature. The protein concentration in the anterior chamber was measured with a protein quantification kit. In vitro, ARPE-19 cells were cultured. The optimum concentration of curcumin was detected by cell counting kit-8 (CCK-8) assay. Before stimulated with 5 μg/mL LPS, ARPE-19 cells were incubated with or without curcumin for 1h. Pro-inflammatory cytokines were measured by RT-PCR and ELISA. PI3K/Akt expression was analyzed by Western blotting. RESULTS: Curcumin pre-treatment led to significant inhibition of EIU-associated leukocyte adhesion to retinal blood vessels and anterior-chamber protein leakage. The mRNA expression level of inflammatory cytokines was also significantly reduced with application of curcumin in vivo, such as IL-1β, IL-6 and TNF-α. Meanwhile, Curcumin significantly attenuated the expression of IL-6, IL-8 and MCP-1 at both mRNA and protein levels in ARPE-19 cells. Curcumin suppressed PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated ARPE-19 cells. CONCLUSION: Curcumin plays a preventive effect on LPS-induced retinal inflammation. The beneficial effect appears associated with inhibiting of the PI3k/Akt signaling pathway.

2020 ◽  
Author(s):  
Dongsheng Xu ◽  
Wenjun Li ◽  
Tao Zhang ◽  
Gang Wang

Abstract Background To investigate the effect of miR-10a on PI3K/AKT signaling pathway. The ischemia-reperfusion injury models of rats were simulated in vivo . Methods RT-PCR was used to test the expression of miR-10a. The serum creatinine and urea nitrogen levels were determined. The pathological changes and the apoptosis of renal cells were observed. The model of HK-2 cells with hypoxia-reoxygenation was established in vitro. The cell proliferation and apoptosis rate were tested by CCK8, clone formation and flow cytometry, respectively. The apoptosis-related proteins and PIK3CA and PI3K/AKT signaling pathway-related proteins were detected by Western blot both in vivo and intro . The dual luciferase assay was used to verify whether PIK3CA is a target gene of miR-10a. PIK3CA gene was over-expression or silenced. The transfection efficiency was verified by RT-PCR and the above experiments were repeated. Results Compared with I/R group, miR-10a RNA was significantly increased in renal tissue of miR-10a group, serum Cr and BUN levels, and renal injury score and apoptosis index were significantly increased, while the expression of PI3K/AKT signaling pathway-related proteins were significantly inhibited. However, the indicators above were contrary in anti-miR group. In comparison with H/R group, miR-10a RNA expression was remarkably increased in miR-10a cells and the cell proliferation was inhibited. The apoptosis rate was increased and the expression of PI3K/AKT signaling pathway-related proteins were down-regulated. However, the indicators above were contrary in anti-miR group. Conclusion miR-10a can aggravate the ischemia-reperfusion-induced renal injury in rats by targeting PIK3CA and inhibitingPI3K/AKT signaling pathway.


2020 ◽  
Vol 19 ◽  
pp. 153303382097753
Author(s):  
Jingtao Wang ◽  
Jimin Zhang ◽  
Dongzhou Ma ◽  
Xiushan Li

To explore the role and mechanism of CERS1 in hypophysoma and investigate whether CERS1 overexpression can change the autophagy process of hypophysoma, and then to explore whether CERS1’s effect was regulated by the PI3K/AKT signaling pathway. Western blot and RT-PCR were used to analyze the expression or mRNA level of CERS1 at different tissues or cell lines. Afterwards, the occurrence and development of hypophysoma in vivo and in vitro, respectively, was observed by using CERS1 overexpression by lentivirus. Finally, MK-2206 and LY294002 were applied to discuss whether the role of CERS1 was regulated by the PI3K/AKT signaling pathway. Results show that the CERS1 expression and mRNA level in tumor or AtT-20 cells were decreased. CERS1 over-expressed by lentivirus could inhibit hypophysoma development in vivo and in vitro by reducing tumor volume and weight, weakening tumor proliferation and invasion, and enhancing apoptosis. In addition, shCERS1 could reverse the process. The above results indicate that CERS1 is possibly able to enhance autophagy in hypophysoma through the PI3K/AKT signaling pathway.


2003 ◽  
Vol 17 (6) ◽  
pp. 610-620 ◽  
Author(s):  
Jiro Umeda ◽  
Shigetoshi Sano ◽  
Kazuhiko Kogawa ◽  
Noboru Motoyama ◽  
Kunihiko Yoshikawa ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dongyong Yang ◽  
Yanqing Wang ◽  
Yajing Zheng ◽  
Fangfang Dai ◽  
Shiyi Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.


2018 ◽  
Vol 132 (6) ◽  
pp. 685-699 ◽  
Author(s):  
Zhen-Guo Ma ◽  
Xin Zhang ◽  
Yu-Pei Yuan ◽  
Ya-Ge Jin ◽  
Ning Li ◽  
...  

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro. In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro. Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro. More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


2019 ◽  
Vol 10 (2) ◽  
pp. 592-601 ◽  
Author(s):  
Xiang Li ◽  
Ze-sheng Zhang ◽  
Xiao-han Zhang ◽  
Sheng-nan Yang ◽  
Dong Liu ◽  
...  

Anthocyanins have been shown to exhibit antitumor activity in several cancersin vitroandin vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document