scholarly journals Mir10a aggravates the ischemia-reperfusion kidney injury by inhibiting the PI3K/AKT signaling pathway

2020 ◽  
Author(s):  
Dongsheng Xu ◽  
Wenjun Li ◽  
Tao Zhang ◽  
Gang Wang

Abstract Background To investigate the effect of miR-10a on PI3K/AKT signaling pathway. The ischemia-reperfusion injury models of rats were simulated in vivo . Methods RT-PCR was used to test the expression of miR-10a. The serum creatinine and urea nitrogen levels were determined. The pathological changes and the apoptosis of renal cells were observed. The model of HK-2 cells with hypoxia-reoxygenation was established in vitro. The cell proliferation and apoptosis rate were tested by CCK8, clone formation and flow cytometry, respectively. The apoptosis-related proteins and PIK3CA and PI3K/AKT signaling pathway-related proteins were detected by Western blot both in vivo and intro . The dual luciferase assay was used to verify whether PIK3CA is a target gene of miR-10a. PIK3CA gene was over-expression or silenced. The transfection efficiency was verified by RT-PCR and the above experiments were repeated. Results Compared with I/R group, miR-10a RNA was significantly increased in renal tissue of miR-10a group, serum Cr and BUN levels, and renal injury score and apoptosis index were significantly increased, while the expression of PI3K/AKT signaling pathway-related proteins were significantly inhibited. However, the indicators above were contrary in anti-miR group. In comparison with H/R group, miR-10a RNA expression was remarkably increased in miR-10a cells and the cell proliferation was inhibited. The apoptosis rate was increased and the expression of PI3K/AKT signaling pathway-related proteins were down-regulated. However, the indicators above were contrary in anti-miR group. Conclusion miR-10a can aggravate the ischemia-reperfusion-induced renal injury in rats by targeting PIK3CA and inhibitingPI3K/AKT signaling pathway.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dongyong Yang ◽  
Yanqing Wang ◽  
Yajing Zheng ◽  
Fangfang Dai ◽  
Shiyi Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


2021 ◽  
Vol 11 ◽  
Author(s):  
Limei Yan ◽  
Zeping He ◽  
Wei Li ◽  
Ning Liu ◽  
Song Gao

Ovarian cancer is considered as one of the most fatal gynecologic malignancies. This work aimed to explore the effects and regulatory mechanism of Acyl-CoA medium-chain synthetase-3 (ACSM3, a subunit of CoA ligases) in ovarian cancer progression. As well as employing CCK-8 assay, clone formation assay, and cell cycle analysis were carried out to investigate cell proliferation ability. Wound healing assay and transwell assay were subsequently used to assess cell migration and invasion. Mice xenografts were then conducted to measure the effects of ACSM3 on tumor development in vivo. Our bioinformatics analysis suggested that the expression of ACSM3 was down-regulated in ovarian cancer tissues, and the low expression level of ACSM3 might related with poorer overall survival than high mRNA expression of ACSM3 in ovarian cancer patients. We artificially regulated the expression of ACSM3 to evaluate its effects on ovarian cancer malignant phenotypes. Our data revealed that the overexpression of ACSM3 inhibited cell proliferation, migration, and invasion of ovarian cancer cells. In contrast, the knock-down of ACSM3 received the opposite results. Our western blot results showed that the Integrin β1/AKT signaling pathway was negatively regulated by ACSM3 expression. Moreover, ACSM3 overexpression-induced suppression of cell migration and invasion activities were abolished by the overexpression of ITG β1 (Integrin β1). Additionally, the growth of ovarian cancer xenograft tumors was also repressed by the overexpression of ACSM3. And ACSM3 interference obtained the contrary effects in vivo. In summary, ACSM3 acts as a tumor suppressor gene and may be a potential therapeutic target of ovarian cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zongxia Wang ◽  
Lizhou Jia ◽  
Yushu sun ◽  
Chunli Li ◽  
Lingli Zhang ◽  
...  

Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Debin Xu ◽  
Jichun Yu ◽  
Shimin Zhuang ◽  
Shuyong Zhang ◽  
Zhengdong Hong ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have been widely reported that involved in human cancers, including papillary thyroid carcinoma (PTC). The present study aims to investigate the biological role of LINC00982 in PTC. The mRNA expression of LINC00982 in human PTC tissues was detected using qPCR. Moreover, Kaplan–Meier method was performed to analyze the internal relevance between LINC00982 expression and overall survival (OS) rate of patients with PTC. In addition, gain- and loss-of-functions assays were performed to detect the effects of LINC00982 on the cell proliferation and migration in PTC cells. Furthermore, western blot assay was used to measure the alteration expression levels of apoptosis relative proteins and the relative protein involved phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Finally, a xenograft model was used to analyze the antitumor role of LINC00982 in vivo. Here, we found that LINC00982 was decreased in human PTC tissues. Patients with decreased LINC00982 expression levels had a reduced OS (P=0.0019) compared with those with high LINC00982 expression levels. Overexpression of LINC00982 suppressed the proliferation and migration of BHT101 and B-CPAP cells and promoted cell apoptosis. Knockdown of LINC00982 promoted the proliferation and migration of BHT101 and B-CPAP cells and induced cell apoptosis. Moreover, in vivo assay showed that overexpression of LINC00982 could suppress the growth of PTC. Finally, LINC00982 could regulate the activity of PI3K/AKT signaling pathway in vitro and in vivo. Taken together, our findings demonstrated that overexpression of LINC00982 could suppress cell proliferation and induce cell apoptosis by regulating PI3K/AKT signaling pathway in PTC.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Mengzhen Li ◽  
Chengtao Sun ◽  
Xiaoyun Bu ◽  
Yi Que ◽  
Lian Zhang ◽  
...  

AbstractNeuroblastoma (NB) is the most common extracranial solid malignancy in children and its mortality rate is relatively high. However, driver genes of NB are not clearly identified. Using bioinformatics analysis, we determined the top 8 differentially expressed genes (DEGs) in NB, including GFAP, PAX6, FOXG1, GAD1, PTPRC, ISL1, GRM5, and GATA3. Insulin gene enhancer binding protein 1 (ISL1) is a LIM homeodomain transcription factor which has been found to be highly expressed in a variety of malignant tumors, but the function of ISL1 in NB has not been fully elucidated. We identified ISL1 as an oncogene in NB. ISL1 is preferentially upregulated in NB tissues compared with normal tissues. High ISL1 expression is significantly associated with poor outcome of NB patients. Knockdown of ISL1 markedly represses proliferation and induces cell apoptosis in vitro, and suppresses tumorigenicity in vivo, while overexpression of ISL1 has the opposite effects. Mechanistically, we demonstrate that ISL1 promotes cell proliferation and EMT transformation through PI3K/AKT signaling pathway by upregulating Aurora kinase A (AURKA), a serine-threonine kinase that is essential for the survival of NB cells. The blockade of AURKA attenuates the function of ISL1 overexpression in the regulation of cell proliferation and migration, Conclusively, this study showed that ISL1 targeted AURKA to facilitate the development of NB, which provided new insights into the tumorigenesis of NB. Thus, ISL1 may be a promising therapeutic target in the future.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Huimin Xu ◽  
Lingao Ju ◽  
Yaoyi Xiong ◽  
Mengxue Yu ◽  
Fenfang Zhou ◽  
...  

AbstractE3 ubiquitin ligase RNF126 (ring finger protein 126) is highly expressed in various cancers and strongly associated with tumorigenesis. However, its specific function in bladder cancer (BCa) is still debatable. Here, we found that RNF126 was significantly upregulated in BCa tissue by TCGA database, and our studies indicated that downregulation of RNF126 significantly inhibited cell proliferation and metastasis through the EGFR/PI3K/AKT signaling pathway in BCa cells. Furthermore, we identified PTEN, an inhibitor of the PI3K/AKT signaling pathway, as a novel substrate for RNF126. By co-immunoprecipitation assays, we proved that RNF126 directly interacts with PTEN. Predominantly, PTEN binds to the C-terminal containing the RING domain of RNF126. The in vivo ubiquitination assay showed that RNF126 specifically regulates PTEN stability through poly-ubiquitination. Furthermore, PTEN knockdown restored cell proliferation, metastasis, and tumor formation of BCa cells inhibited by RNF126 silencing in vitro and in vivo. In conclusion, these results identified RNF126 as an oncogene that functions through ubiquitination and degradation of PTEN in BCa.


2020 ◽  
Vol 19 ◽  
pp. 153303382097753
Author(s):  
Jingtao Wang ◽  
Jimin Zhang ◽  
Dongzhou Ma ◽  
Xiushan Li

To explore the role and mechanism of CERS1 in hypophysoma and investigate whether CERS1 overexpression can change the autophagy process of hypophysoma, and then to explore whether CERS1’s effect was regulated by the PI3K/AKT signaling pathway. Western blot and RT-PCR were used to analyze the expression or mRNA level of CERS1 at different tissues or cell lines. Afterwards, the occurrence and development of hypophysoma in vivo and in vitro, respectively, was observed by using CERS1 overexpression by lentivirus. Finally, MK-2206 and LY294002 were applied to discuss whether the role of CERS1 was regulated by the PI3K/AKT signaling pathway. Results show that the CERS1 expression and mRNA level in tumor or AtT-20 cells were decreased. CERS1 over-expressed by lentivirus could inhibit hypophysoma development in vivo and in vitro by reducing tumor volume and weight, weakening tumor proliferation and invasion, and enhancing apoptosis. In addition, shCERS1 could reverse the process. The above results indicate that CERS1 is possibly able to enhance autophagy in hypophysoma through the PI3K/AKT signaling pathway.


2021 ◽  
Vol 2 (1) ◽  
pp. 6-13
Author(s):  
Yan Li ◽  
◽  
Xue Li ◽  
Shan-Bi Zhou ◽  
◽  
...  

AIM: To investigate whether the curcumin reduce retinal inflammation in animal model and human retinal pigment epithelium (ARPE)-19 cells. METHODS: In vivo, male C57/B6 mice received intraperitoneal injections of curcumin for 3d before intraperitoneal injection of lipopolysaccharide (LPS; 10 mg/kg) to induce retinal inflammation. 24h after LPS application, the mRNA levels of pro-inflammatory cytokines were detected by real-time polymerase chain reaction (RT-PCR). Concanavalin A lectin perfusion-labeling technique evaluated leukocyte adhesion to the retinal vasculature. The protein concentration in the anterior chamber was measured with a protein quantification kit. In vitro, ARPE-19 cells were cultured. The optimum concentration of curcumin was detected by cell counting kit-8 (CCK-8) assay. Before stimulated with 5 μg/mL LPS, ARPE-19 cells were incubated with or without curcumin for 1h. Pro-inflammatory cytokines were measured by RT-PCR and ELISA. PI3K/Akt expression was analyzed by Western blotting. RESULTS: Curcumin pre-treatment led to significant inhibition of EIU-associated leukocyte adhesion to retinal blood vessels and anterior-chamber protein leakage. The mRNA expression level of inflammatory cytokines was also significantly reduced with application of curcumin in vivo, such as IL-1β, IL-6 and TNF-α. Meanwhile, Curcumin significantly attenuated the expression of IL-6, IL-8 and MCP-1 at both mRNA and protein levels in ARPE-19 cells. Curcumin suppressed PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated ARPE-19 cells. CONCLUSION: Curcumin plays a preventive effect on LPS-induced retinal inflammation. The beneficial effect appears associated with inhibiting of the PI3k/Akt signaling pathway.


Author(s):  
Yang Chen ◽  
Yuhong Liu ◽  
Qiang Tao ◽  
YouWen Fan ◽  
Chao Ma ◽  
...  

Background: Our study seeks to obtain data to assess the impacts of circPUM1 on pancreatic cancer (PC) and its mechanism. Methods: The expression of circPUM1 and miR-200c-3p in PC and normal tissues and PC cell lines was collected and detected. Subsequently, dual-luciferase assay-based verification of the binding site of the two was carried out. After interfering with circPUM1 expression in MIAPaCa-2 and PANC-1 cells, cell proliferation, viability, apoptosis rate, invasion ability, glucose consumption, and lactate production were measured by MTT, colony formation, flow cytometry, Transwell assays, and glucose and lactate assay kits. Additionally, western blot was utilized for assessing PI3K/AKT signaling pathway-related proteins. From the results, highly expressed circPUM1 and miR-200c-3p in PC tissues and cells were proved. Results: Down-regulation of circPUM1 expression significantly inhibited cell proliferation, cell viability, invasion, and glycolysis, while increasing the apoptosis rate. Down-regulated circPUM1 led to the inhibition of the PI3K/AKT signaling pathway activity in PC cells, while up-regulated circPUM1 increased its activity. Further experiments revealed that down-regulation of miR-200c-3p expression reversed the inhibitory effect of lowly expressed circPUM1 on PC cells. Conclusion: In summary, circPUM1 activates PI3K/AKT signaling pathway by sponging miR-200c-3p and promotes PC progression.


Sign in / Sign up

Export Citation Format

Share Document