scholarly journals Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment

2021 ◽  
Vol 14 (3) ◽  
pp. 448-455
Author(s):  
Xian-Ning Liu ◽  
◽  
Yun Chen ◽  
Yao Wang ◽  
◽  
...  

Corneal stroma-derived mesenchymal stem cells (CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells (LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
June Seok Heo ◽  
Seung Gwan Lee ◽  
Hyun Ok Kim

Mesenchymal stem cells (MSCs) are a promising tool for studying intractable diseases. Unfortunately, MSCs can easily undergo cellular senescence during in vitro expansion by losing stemness. The aim of this study was to improve the stemness and differentiation of MSCs by using glabridin, a natural flavonoid. Assessments of cell viability, cell proliferation, β-galactosidase activity, differentiation, and gene expression by reverse transcription PCR were subsequently performed in the absence or presence of glabridin. Glabridin enhanced the self-renewal capacity of MSCs, as indicated by the upregulation of the OCT4 gene. In addition, it resulted in an increase in the osteogenic differentiation potential by inducing the expression of osteogenesis-related genes such as DLX5 and RUNX2. We confirmed that glabridin improved the osteogenesis of MSCs with a significant elevation in the expression of OSTEOCALCIN and OSTEOPONTIN genes. Taken together, these results suggest that glabridin enhances osteogenic differentiation of MSCs with induction of the OCT4 gene; thus, glabridin could be useful for stem cell-based therapies.


2021 ◽  
Vol 12 ◽  
pp. 204173142110048
Author(s):  
Ha Na Kim ◽  
Jin Young Shin ◽  
Dong Yeol Kim ◽  
Ji Eun Lee ◽  
Phil Hyu Lee

Mesenchymal stem cells (MSCs) are a potential source of cell-based disease-modifying therapy in Parkinsonian disorders. A promising approach to develop in vitro culture methods that mimic natural MSC niche is cell priming. Uric acid (UA), a powerful antioxidant, scavenges reactive oxygen species, which has a vital role in maintaining self-renewal and differentiation potential of MSCs. Here, we demonstrated that UA treatment in naïve MSCs stimulated glycolysis and upregulated transcriptional factors responsible for regulation of stemness, leading to increase in the expression levels of osteogenesis-, adipogenesis-, and chondrogenesis-related genes. UA-primed MSCs had more enhanced neuroprotective properties in cellular and parkinsonian animal models compared to naïve MSCs by inhibiting apoptotic signaling pathways. Additionally, expression of miR-137 and miR-145 was decreased in UA-treated MSCs. Our data demonstrated that priming MSCs with UA augment neuroprotective properties through enhanced self-renewal and differentiation potential, suggesting a practical strategy for improving the application of MSCs in parkinsonian disorders.


2012 ◽  
Vol 1498 ◽  
pp. 39-45
Author(s):  
Courtney E. LeBlon ◽  
Caitlin R. Fodor ◽  
Tony Zhang ◽  
Xiaohui Zhang ◽  
Sabrina S. Jedlicka

ABSTRACTHuman mesenchymal stem cells (hMSCs) were routinely cultured on tissue-culture polystyrene (TCPS) to investigate the in vitro aging and cell stiffening. hMSCs were also cultured on thermoplastic polyurethane (TPU), which is a biocompatible polymer with an elastic modulus of approximately 12.9MPa, to investigate the impact of substrate elastic modulus on cell stiffening and differentiation potential. Cells were passaged over several generations on each material. At each passage, cells were subjected to osteogenic and myogenic differentiation. Local cell elastic modulus was measured at every passage using atomic force microscopy (AFM) indentation. Gene and protein expression was examined using qRT-PCR and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Results show that the success of myogenic differentiation is highly reliant on the elastic modulus of the undifferentiated cells. The success of osteogenic differentiations is most likely somewhat dependent on the cell elastic modulus, as differentiations were more successful in earlier passages, when cells were softer.


2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2018 ◽  
Vol 46 (12) ◽  
pp. 2942-2953 ◽  
Author(s):  
Yoichi Murata ◽  
Soshi Uchida ◽  
Hajime Utsunomiya ◽  
Akihisa Hatakeyama ◽  
Hirotaka Nakashima ◽  
...  

Background: Several studies have shown the relationship between poorer clinical outcomes of arthroscopic femoroacetabular impingement syndrome surgery and focal chondral defects or global chondromalacia/osteoarthritis. Although recent studies described good outcomes after the conjunctive application of synovial mesenchymal stem cells (MSCs), none demonstrated the application of synovial MSCs for cartilaginous hip injuries. Purpose: To compare the characteristics of MSCs derived from the paralabral synovium and the cotyloid fossa synovium and determine which is the better source. Study Design: Controlled laboratory study. Methods: Synovium was harvested from 2 locations of the hip—paralabral and cotyloid fossa—from 18 donors. The number of cells, colony-forming units, viability, and differentiation capacities of adipose, bone, and cartilage were collected and compared between groups. In addition, real-time polymerase chain reaction was used to assess the differentiation capacity of adipose, bone, and cartilage tissue from both samples. Results: The number of colonies and yield obtained at passage 0 of synovium from the cotyloid fossa was significantly higher than that of the paralabral synovium ( P < .01). In adipogenesis experiments, the frequency of detecting oil red O–positive colonies was significantly higher in the cotyloid fossa than in the paralabral synovium ( P < .05). In osteogenesis experiments, the frequency of von Kossa and alkaline phosphatase positive colonies was higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). In chondrogenic experiments, the chondrogenic pellet culture and the gene expressions of COL2a1 and SOX9 were higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). Conclusion: MSCs from the cotyloid fossa synovium have higher proliferation and differentiation potential than do those from the paralabral synovium and are therefore a better source. Clinical Relevance: Synovial cells from the cotyloid fossa synovium of patients with femoroacetabular impingement syndrome are more robust in vitro, suggesting that MSCs from this source may be strongly considered for stem cell therapy.


2013 ◽  
Vol 25 (1) ◽  
pp. 295
Author(s):  
B. Mohana Kumar ◽  
W. J. Lee ◽  
Y. M. Lee ◽  
R. Patil ◽  
S. L. Lee ◽  
...  

Mesenchymal stem cells (MSC) are isolated from bone marrow or other tissues, and have properties of self renewal and multilineage differentiation ability. The current study investigated the in vitro differentiation potential of porcine bone marrow derived MSCs into hepatocyte-like cells. The MSC were isolated from the bone marrow of adult miniature pigs (7 months old, T-type, PWG Micro-pig®, PWG Genetics, Seoul, Korea) and adherent cells with fibroblast-like morphology were cultured on plastic. Isolated MSCs were positive for CD29, CD44, CD73, CD90, and vimentin, and negative for CD34, CD45, major histocompatibility complex-class II (MHC-class II), and swine leukocyte antigen-DR (SLA-DR) by flow cytometry analysis. Further, trilineage differentiation of MSC into osteocytes (alkaline phosphatase, von Kossa and Alizarin red), adipocytes (Oil Red O), and chondrocytes (Alcian blue) was confirmed. Differentiation of MSC into hepatocyte-like cells was induced with sequential supplementation of growth factors, cytokines, and hormones for 21 days as described previously (Taléns-Visconti et al. 2006 World J. Gastroenterol. 12, 5834–5845). Morphological analysis, expression of liver-specific markers, and functional assays were performed to evaluate the hepatic differentiation of MSC. Under hepatogenic conditions, MSC acquired cuboidal morphology with cytoplasmic granules. These hepatocyte-like cells expressed α-fetoprotein (AFP), albumin (ALB), cytokeratin 18 (CK18), cytochrome P450 7A1 (CYP7A1), and hepatocyte nuclear factor 1 (HNF-1) markers by immunofluorescence assay. In addition, the expression of selected markers was demonstrated by Western blotting analysis. In accordance with these features, RT-PCR revealed transcripts of AFP, ALB, CK18, CYP7A1, and HNF-1α. Further, the relative expression levels of these transcripts were analysed by quantitative RT-PCR after normalizing to the expression of the endogenous control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data were analysed statistically by one-way ANOVA using PASW statistics 18 (SPSS Inc., Chicago, IL, USA), and significance was considered at P < 0.05. The results showed that the relative expressions of selected marker genes in hepatocyte-like cells were significantly increased compared with that in untreated MSC. The generated hepatocyte-like cells showed glycogen storage as analysed by periodic acid-Schiff (PAS) staining. Moreover, the induced cells produced urea at Day 21 of culture compared with control MSC. In conclusion, our results indicate the potential of porcine MSC to differentiate in vitro into hepatocyte-like cells. Further studies on the functional properties of hepatocyte-like cells are needed to use porcine MSC as an ideal source for liver cell therapy and preclinical drug evaluation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF), funded by the Ministry of Education, Science and Technology (2010-0010528) and the Next-Generation BioGreen 21 Program (No. PJ009021), Rural Development Administration, Republic of Korea.


2018 ◽  
Vol 30 (1) ◽  
pp. 236 ◽  
Author(s):  
Y.-H. Choe ◽  
H.-J. Lee ◽  
S.-L. Lee ◽  
J.-H. Lee ◽  
B.-W. Park ◽  
...  

In the recent era of veterinary research, stem cells have gained special attention due to their efficiency and use in clinical applications. Mesenchymal stem cells (MSC) have been extensively studied over decades, and their prospect for clinical application is recognised in human medicine. Despite numerous reports in veterinary clinical trials of stem cells, few studies have been presented regarding the in vitro characterisation of canine mesenchymal stem cells (cMSC). Therefore, their efficacy as therapeutic agents in vitro has not been much elucidated. Canine adipose-derived mesenchymal stem cells (cAMSC) were characterised as per International Society for Cellular Therapy guidelines. Culturing cells showed spindle-like morphology and high proliferation rate. They displayed positive expression of mesenchymal markers CD44, CD90, and CD105, and lacked expression of CD34 and CD45. They were also positive for expression of pluripotency-related transcription factors (Oct3/4, Nanog, and Sox2) and showed differentiation potential towards mesodermal lineages. The cAMSC were further analysed for the neuronal trans-differentiation potential. Under appropriate differentiation conditions, cAMSC displayed distinctive dendritic morphology along with axon projections. Neuronal specific genes including Nestin, β-tubulin, neurofilament protein (NF-M, NF-H), and nerve growth factor (NGF) were also positively expressed. Nevertheless, functional analysis of neuronal differentiated cAMSC displayed voltage dependence and kinetics for transient K+ and Na+ currents (Ito). Both K+ and Na+ currents were recorded in differentiated MSC by voltage steps (between −120 and +60 mV for K+ currents, −40 and +50 mV for Na+ currents), whereas control undifferentiated MSC lacked the currents. Taken together, we concluded that the cAMSC have potential to differentiate into neuron-like cells. Based on these findings, we transplanted cAMSC into the spinal cord injured dogs to evaluate their clinical efficiency under approved medical guidelines set by Gyeongsang National University Animal Medical Center (Korea). Neurological examination showed that the injured dog had undergone hind limb paralysis and lost deep pain sensation due to an L2 spinal cord lesion, as detected by CT and MRI. The dog was diagnosed with traumatic L2 intradural spinal cord contusion, and decompression surgery was performed, but deep pain sensation did not recover. Therefore, each cAMSC (diluted in 0.5 mL of saline) was transplanted into spinal cord segment (L2~L3) 5 times at 1-week intervals. The dog showed mild recovery of deep pain sensation by neurological examinations and exhibited gradual improvement in hind limb function. Finally, we concluded that transplantation of cAMSC has a beneficial therapeutic effect on spinal cord injury. This study also provides a significant advantage in understanding the potential of MSC-based products in veterinary clinical applications.


Sign in / Sign up

Export Citation Format

Share Document