scholarly journals Metal adsorption in aqueous media using Moringa oleifera Lam. seeds produced in Ecuador as an alternative method for water treatment

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Andrea Carolina Landázuri ◽  
Jaime David Cahuasquí Segura ◽  
Andres Sebastián Lagos Estrella

This work explores the technical viability in the use ofMoringa oleifera Lam. seeds produced in Ecuador as an adsorbent medium for copper (Cu), nickel (Ni) and chromium (Cr) present in water that could be implemented in future Water Resource Recovery Facilities in Ecuador. The seeds were prepared following a sequence of washing, drying, crushing, sieving, rewashing, and final drying. Two treatments were performed based on particle size.  Treatment 1 consisted on a mixture of 70% of particles larger than 2 mm and 30% of particles between 1 and 2 mm; while Treatment 2 consisted only on 1 - 2 mm particles. Batch experiments were performed with metal concentrations ranging from 10 to 150 ppm, a dose of 1.00 g of MO per liter, and mechanical stirring for 1 hour. Treatment 2 showed to be more favorable to metal removal and the Langmuir model better characterized adsorption of the three metals.The best kinetic description of the three metals is that of a pseudo first-order reaction where the adsorption capacities are 50.93 mg Cu/g MO, 30.14 mg Ni/g MO, and 40.98 mg Cr/g MO, with removal percentage of 37 - 53 %, 39 - 76%, and 11 - 33%, respectively. 

Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Adriana Vázquez-Guerrero ◽  
Raúl Cortés-Martínez ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
Eric M. Rivera-Muñoz ◽  
Rafael Huirache-Acuña

This work informs on the green synthesis of a novel adsorbent and its adsorption capacity. The adsorbent was synthesized by the combination of iron nanoparticles and cellulose nanofibers (FeNPs/NFCs). Cellulose nanofibers (NFCs) were obtained from Moringa (Moringa oleifera Lam.) by a pulping Kraft process, acid hydrolysis, and ultrasonic methods. The adsorption method has advantages such as high heavy metal removal in water treatment. Therefore, cadmium (Cd) and lead (Pb) adsorption with FeNP/NFC from aqueous solutions in batch systems was investigated. The kinetic, isotherm, and thermodynamic parameters, as well as the adsorption capacities of FeNP/NFC in each system at different temperatures, were evaluated. The adsorption kinetic data were fitted to mathematical models, so the pseudo-second-order kinetic model described both Cd and Pb. The kinetic rate constant (K2), was higher for Cd than for Pb, indicating that the metal adsorption was very fast. The adsorption isotherm data were best described by the Langmuir–Freundlich model for Pb multilayer adsorption. The Langmuir model described Cd monolayer sorption. However, experimental maximum adsorption capacities (qe exp) for Cd (>12 mg/g) were lower than those for Pb (>80 mg/g). In conclusion, iron nanoparticles on the FeNP/NFC composite improved Cd and Pb selectivity during adsorption processes, indicating the process’ spontaneous and exothermic nature.


2009 ◽  
Vol 59 (7) ◽  
pp. 1361-1369 ◽  
Author(s):  
Edison Gil Pavas ◽  
Miguel Ángel Gómez-García

This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO2) and hydrogen peroxide (H2O2). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.


2018 ◽  
Vol 156 ◽  
pp. 02012 ◽  
Author(s):  
Mardiah ◽  
Rif’an Fathoni ◽  
Pratiwi Pudyaningtyas ◽  
Hamdania Gamu ◽  
Rinaldy

High Consumption of paper, bring the impact of the waste paper itself. And the utilization of the paper is limited to recycled products and crafts, whereas paper such as newspaper still contains cellulose that can be potential to be used as a heavy metal adsorbent. In this study, newspaper was dissolved in sodium bicarbonate to reduce various impurities and then was reacted with citric acid (CA). The modified adsorbent was characterized by FTIR and was tested for adsorb Cu(II) in artificial solution. After adsorption process, the solution was filtered and analysed using Atomic Absorption Spectrophotometer (AAS). The adsorption experimental data was fitted to Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich for equilibrium model and was fitted to pseudo first order reaction and pseudo second order reaction for kinetic studies. The result showed that CA-modification newspaper able to remove heavy metals Cu(II) in solution.


2018 ◽  
Vol 5 (4) ◽  
pp. 171457 ◽  
Author(s):  
Zhigang Yi ◽  
Juan Wang ◽  
Tao Jiang ◽  
Qiong Tang ◽  
Ying Cheng

In this study, photocatalytic experiments of 20 mg l −1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.


1985 ◽  
Vol 40 (3-4) ◽  
pp. 215-218 ◽  
Author(s):  
Fritz Thümmler ◽  
Peter Eilfeld ◽  
Wolfhart Rüdiger ◽  
Doo-Khil Moon ◽  
Pill-Soon Song

The reactivity of the phytochrome chromophore and related tetrapyrroles towards ozone and tetranitromethane was investigated. Both oxidizing reagents cause bleaching of the main absorp­tion band of the pigment. The rate constants for this bleaching were determined under conditions of pseudo first order reaction kinetics. The rate constants for the reaction with ozone are similar for native phytochrome and for freely accessible tetrapyrroles (biliverdin, small chromopeptides from phytochrome) indicating that accessibility is not the limiting factor for the reaction with ozone. Under a variety of conditions, the Pfr chromophore reacts by about 10% faster than the Pr chromophore. This may reflect the true difference in reactivity. The rate constants for the reaction with tetranitromethane are much larger for biliverdin, bilirubin and small chromopeptides from phytochrome than for native phytochrome. The limiting factor for this reaction in native phytochrome therefore is the accessibility of the chromophore by the reagent. Previous conclusions on the difference in exposure of the tetrapyrrole chromophore in Pr and Pfr are confirmed.


1987 ◽  
Author(s):  
W Ruf ◽  
A Bender ◽  
K T Preissner ◽  
D A Lane ◽  
G Müller-Berghaus

The fibrinopeptides A and B (FPA and FPB) are cleaved from the fibrinogen molecule with different rates. In the initial phase of the thrombin-fibrinogen reaction, FPB is released with a slow rate, which is enhanced upon polymerization of desA-fi-brin monomers. The aim of the present study was to further characterize the mechanism leading to the enhanced rate of FPB release during polymerization. For this purpose, the release of FPB from normal fibrinogen and from fibrinogen London I, which exhibits a polymerization defect located in the D-domain, was studied in the presence and absence of the fibrinolytic fragment D1 (D1) and of the synthetic tetrapeptide Gly-Pro-Arg-Pro (GPRP). Steady state parameters for fibrinopeptide release were determined under pseudo-first order reaction conditions. In the initial phase of the thrombin-fibrinogen reaction, the release of FPA was unchanged in the presence of D1. Furthermore, the release of FPA from fibrinogen London I did not reveal any difference in comparison to normal fibrinogen. GPRP prevented not only fibrin polymerization, but also the enhanced rate of FPB release. On the contrary, the rate of FPB release in the presence of a 16- and 32-fold molar excess of over fibrinogen did not differ from a reaction mixture with no added D1. Si-miliar to the inhibited rate of FPB release in the presence of GPRP, the release of FPB from fibrinogen London I occurred with a slow rate, which was not enhanced by the addition of a 16-fold molar excess of D1. Since the release neither from normal fibrinogen nor from ribrinogen London I was affected by D1, it was concluded that the D-E contact formed by D1 with an E-domain of a desA-fibrin molecule does not enhance the release of FPB. While GPRP keeps fibrin in monomeric form by inhibiting the polymerization sites in the D-domains, D1 does not prevent the formation of fibrin oligomers. Therefore, acceleration of FPB release is caused by a conformational change, which is induced by binding of reciprocal polymerization sites to an E-as well as a D-domain of the same desA-fibrin molecule.


2014 ◽  
Vol 665 ◽  
pp. 455-458
Author(s):  
Li Guo ◽  
Jin Huang ◽  
Jun Wu ◽  
Lei Lei Luo

The photodegradation of 4,4-bis (4-hydroxyphenyl) pentanoic acid (DPA) with two cyclodextrins (α-CD and β-CD ) in aqueous solutions induced by UV-light was studied in this paper by means of fluorescence spectra and high efficiency liquid chromatography. The result suggested that DPA with α-CD or β-CD formed inclusion compound in aqueous solutions. The photodegradation of DPA with two cyclodextrins or without cyclodextrin was pseudo-first order reaction. The photodegradation of DPA was accelerated by the addition of β-CD in aqueous solutions, but the that of DPA was inhibited in case of adding α-CD. These differences were due to the differences in inclusion interaction of DPA with α-CD or β-CD.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 8892-8901 ◽  
Author(s):  
Himadri Sahu ◽  
Kaustubha Mohanty

In this work, waste fish bone was used as a source of natural hydroxyapatite which was later used for the preparation of a metal grafted catalyst.


2007 ◽  
Vol 275 (3) ◽  
pp. 555-562 ◽  
Author(s):  
Shih-Chin Tsai ◽  
Tsing-Hai Wang ◽  
Yuan-Yaw Wei ◽  
Wen-Chun Yeh ◽  
Yi-Lin Jan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document