scholarly journals Numerical Study of the Surface Roughness, Thermal Conductivity of the Contact Materials and Interstitial Fluid Convection Coefficient Effect on the Thermal Contact Conductance

2019 ◽  
Vol 43 (4) ◽  
pp. 265-271
Author(s):  
Chadouli Rachid ◽  
Frédéric Lebon ◽  
Iulian Rosu ◽  
Makhlouf Mohammed
1993 ◽  
Vol 115 (1) ◽  
pp. 131-134 ◽  
Author(s):  
V. W. Antonetti ◽  
T. D. Whittle ◽  
R. E. Simons

An approximate thermal contact conductance correlation which does not depend upon the surface asperity slope was developed. Published surface texture data for 65 specimens were used to establish a relationship between the average roughness and the RMS asperity slope, which was then used to develop a new approximate thermal contact conductance correlation. The investigation was conducted for a range of surface roughness typical of contacting surfaces. Comparison to limited test data and to 2080 simulated contact joints, indicates the new approximate thermal contact conductance correlation has an expected RMS error of approximately 23 percent.


Author(s):  
He Peng ◽  
Ning Xu ◽  
Zhansheng Liu

Tighten force has much influence on tie-bolt fastened rotor dynamics. Temperature distribution in tie-bolt fastened rotor results in thermal expansion of rotor and rods. The difference of thermal expansion between rotor and rods causes the variation of bolt load. With considering the thermal contact conductance, the thermal model of tie-bolt fastened rotor was established by finite element method and the axial temperature distribution was obtained. The influences of surface roughness, nominal contact pressure and axial position of contact on axial temperature distribution were analysed. Based on temperature distribution in the tie-bolt fastened rotor, the variation of tighten force was investigated. Results show that nominal contact pressure, surface roughness and axial contact arrange have different influences on the variation of tighten force with temperature.


1991 ◽  
Vol 113 (1) ◽  
pp. 30-36 ◽  
Author(s):  
P. F. Stevenson ◽  
G. P. Peterson ◽  
L. S. Fletcher

An investigation was conducted to verify experimentally the existence of thermal rectification and to determine the effect of surface roughness and material type. Four pairs of test specimens were evaluated: one with a smooth Nickel 200 surface in contact with a rough Nickel 200 surface, one with a smooth Stainless Steel 304 surface in contact with a rough Stainless Steel 304 surface, one with a smooth Nickel 200 surface in contact with a rough Stainless Steel 304 surface, and finally, one with a smooth Stainless Steel 304 surface in contact with a rough Nickel 200 surface. The thermal contact conductance was measured for heat flow from both the smooth to rough and rough to smooth configurations for all four pairs. The results indicate that thermal rectification is a function of surface characteristics, material type, and heat flow direction. For similar materials in contact, some thermal rectification was observed with heat flow from the rough surface to the smooth surface resulting in a higher value of contact conductance. For dissimilar materials, the thermal contact conductance was highest when the heat flow was from the Stainless Steel 304 to Nickel 200. In these cases, the surface roughness was shown to be of secondary importance.


2006 ◽  
Vol 129 (9) ◽  
pp. 1109-1118 ◽  
Author(s):  
Chaitanya J. Bapat ◽  
Stefan T. Thynell

The focus of this work is to study the effects of anisotropic thermal conductivity and thermal contact conductance on the overall temperature distribution inside a fuel cell. The gas-diffusion layers and membrane are expected to possess an anisotropic thermal conductivity, whereas a contact resistance is present between the current collectors and gas-diffusion layers. A two-dimensional single phase model is used to capture transport phenomena inside the cell. From the use of this model, it is predicted that the maximum temperatures inside the cell can be appreciably higher than the operating temperature of the cell. A high value of the in-plane thermal conductivity for the gas-diffusion layers was seen to be essential for achieving smaller temperature gradients. However, the maximum improvement in the heat transfer characteristics of the fuel cell brought about by increasing the in-plane thermal conductivity is limited by the presence of a finite thermal contact conductance at the diffusion layer/current collector interface. This was determined to be even more important for thin gas-diffusion layers. Anisotropic thermal conductivity of the membrane, however, did not have a significant impact on the temperature distribution. The thermal contact conductance at the diffusion layer/current collector interface strongly affected the temperature distribution inside the cell.


2010 ◽  
Vol 97-101 ◽  
pp. 3239-3242 ◽  
Author(s):  
Yong Bing Li ◽  
Xin Min Lai ◽  
Guan Long Chen

Resistance spot welding process is strongly related to interfacial contact behaviors. The effects of thermal contact is rarely investigated so far and generally ignored in numerical models. In this work, a parametric FE model, which considers the variation of the surface roughness of the electrodes and workpieces, has been developed to investigate the effects of thermal contact on weld nugget formation. With the parametric model, four cases, e.g. ideal smooth surface, minimal roughness surface and maximum roughness surface for steel sheets and electrodes of as-received condition, and highly rough electrode surface, are investigated. Researches show that when the surface roughness of the electrodes exceeds some limit, the thermal contact conductance will substantially affect the weld nugget formation, therefore, must be considered in numerical models to precisely predict welding process.


1999 ◽  
Vol 122 (2) ◽  
pp. 128-131 ◽  
Author(s):  
Yunsheng Xu ◽  
Xiangcheng Luo ◽  
D. D. L. Chung

Sodium silicate based thermal interface pastes give higher thermal contact conductance across conductor surfaces than polymer based pastes and oils, due to their higher fluidity and the consequent greater conformability. Addition of hexagonal boron nitride particles up to 16.0 vol. percent further increases the conductance of sodium silicate, due to the higher thermal conductivity of BN. However, addition beyond 16.0 vol. percent BN causes the conductance to decrease, due to the decrease in fluidity. At 16.0 vol. percent BN, the conductance is up to 63 percent higher than those given by silicone based pastes and is almost as high as that given by solder. Water is almost as effective as sodium silicate without filler, but the thermal contact conductance decreases with time due to the evaporation of water. Mineral oil and silicone without filler are much less effective than water or sodium silicate without filler. [S1043-7398(00)00402-3]


2004 ◽  
Vol 71 (1) ◽  
pp. 57-68 ◽  
Author(s):  
J. Y. Jang ◽  
M. M. Khonsari

A model is developed to investigate the mechanism of thermoelastic instability (TEI) in tribological components. The model consists of two thermally conducting bodies of finite thickness undergoing sliding contact. Appropriate governing equations are derived to predict the critical speed beyond which the TEI is likely to occur. This model takes into account the surface roughness characteristics of the contacting bodies as well as the thermal contact conductance at the interface. Analytical expressions are provided for the special cases neglecting the disk thickness and the thermal contact conductance. An extensive series of parametric simulations and discussion of the implication of the results are also presented. The simulations show that the difference in material properties and geometry of the two conducting bodies has a pronounced influence on the critical speed. A special case of the model shows that the threshold of TEI critical speed is pushed to a much higher level when the conducting bodies have identical material properties and are geometrically symmetric. It is also shown that the perturbed wave generally tends to move with the body with higher thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document