scholarly journals Experimental Study of the Efficiency of a Solar Water Heater Construction from Recycled Plastic Bottles

2021 ◽  
Vol 16 (2) ◽  
pp. 121-126
Author(s):  
Besma Chekchek ◽  
Mohamed Salmi ◽  
Abdelhakim Boursas ◽  
Giulio Lorenzini ◽  
Hijaz Ahmad ◽  
...  

A solar polymer heat exchanger is designed to heat water; its primary materials are plastic water bottles with a capacity of 1.5 liters. These materials were recycled to preserve the environment and to make use of it again. The thermal insulation properties are adopted for the characterization of polymeric materials. These properties concern the conservation of energy for the longest period of time and the absence of problems caused by rust and corrosion, which are usually encountered in traditional heat exchangers. The heat exchanger experiments start by tracking the flow of water inside the pipes by a valve. The water temperature and flow rates are determined at the inlet and outlet surfaces of the exchanger. The obtained results indicated an increase in water temperature exceeding 10℃ in an ideal spring day. The thermal efficiency of the solar collector was about 62% under the sunlight, and 44% in the laboratory where halogen lamps were used as an industrial light source.

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1461-1472 ◽  
Author(s):  
Karuthedath Dileep ◽  
Arun Raj ◽  
Divakaran Dishnu ◽  
Ahamed Saleel ◽  
Mokkala Srinivas ◽  
...  

The present work attempts to demonstrate the competence and reliability of the proposed computational solver for real-scale modelling and analysis of a commercially available evacuated tube collector type solar water heater. A 3-D, transient numerical solver with user-defined functions is modelled using CFD program ANSYS-Fluent 15.0?. The objective is to analyse the evacuated tube collector type solar water heater in two states of operation, namely, static (stagnant charging) and dynamic (retrieval) modes. This work emphasizes the determination of the impact of thermal stratification, and fluid mixing in the storage tank on the outlet temperature profile during discharging. Volume flow rates vary from 3-15 Lpm. The reported findings suggest that with an increase of fluid-flow during discharge, the stratified layers disorient and lead to rapid mixing, which eventually results in an earlier drop in the outlet water temperature. Furthermore, at low fluid-flow rates, the stratified layers remain intact with only a gradual decay in the outlet temperature profile. The analysis reveals that based on the user?s choice, it is possible to vary discharge flow rate until 7 Lpm without a significant drop in the outlet water temperature. Furthermore, computational results have been successfully validated with experimental findings.


Vestnik MGSU ◽  
2019 ◽  
pp. 621-633 ◽  
Author(s):  
Tatyana A. Rafalskaya ◽  
Valery Ya. Rudyak

Introduction. Being used in various industries, heat exchangers most often work under conditions of variable coolant flows and temperatures. At the same time, the existing theories of calculating the heat exchanger operation modes are based on the use of constant unitless parameters at any operation mode. Taking into account the effect of coolant rates on the heat transfer coefficient of the heat exchangers, the given relations are bound to specific types of heat exchangers and can only be used at constant coolant temperatures. The purpose of this study is to obtain expressions for determining the effect of coolant flow rates on the variable heat exchanger parameter. Materials and methods. The main variable operation modes for water-to-water heat exchangers used in heat supply systems are determined. Using simulation in the PTC Mathcad software, dependencies describing the change in the heat exchanger parameter for all the considered variable operation modes are defined. This made it possible to obtain a general formula for the change in the heat exchanger parameter for varying coolant flow rates. Coefficients in this formula take into consideration the effect of coolant temperatures, which cannot be known when calculating variable conditions, especially when the interconnected heat exchangers are operating. Results. To test applicability of the existing relations describing the change in the heat exchanger parameter and of obtained formula, a large number of heat exchangers is calculated at variable operation modes. Comparison with the simulation results shows that the correlations of heat exchanger theories work well at the mode with constant coolant temperatures only, while their use at other operation modes can lead to large calculation errors. Conclusions. The obtained formula allows finding the effect of coolant flow rates on the variable heat exchanger parameter. The formula can be used to predict the operation modes of large systems including a large number of various-type heat exchangers.


Author(s):  
Yuhiro Iwamoto ◽  
Hiroshi Yamaguchi

For supercritical CO2, a small change in temperature or pressure can result in large change in density, especially in the state close to the critical point. The large change in density can easily induce the natural convective flow. In this chapter, a solar water heater using supercritical CO2 which is originally designed and constructed will be introduced. The solar water heater is a closed loop system with main components of an evacuated solar collector and a heat exchanger. The working fluid of CO2 is naturally driven by the large change in density with absorbing and transporting heat in the solar collector. And the heat energy (hot water) is produced by exchanging the transferred heat with water in the heat exchanger. This chapter will describe the typical system operation and performance at different season and climates.


2014 ◽  
Vol 3 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Mourad Chikhi ◽  
Rabah Sellami ◽  
Nachida Kasbadji Merzouk

The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For development solar water heaters, the incentive programs are supported by the Algerian government to generalize the using of this kind of energy especially in Sahara. This study is a part of program to develop a new solar water heater in UDES (Algeria). In this research work, the thermal performance of a solar water heater with a mantle heat exchanger is investigated numerically using Comsol Multyphysics software. The objective is to investigate the influence of the mantle heat exchanger thickness on the performance of solar water heaters. The results show, for 160 liters capacity of the solar water heaters tank, the 13mm of the heat exchanger thickness leads to improve the efficiency of the solar water heater.


ELKHA ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Rusadi Rusadi

Abstract–Issues about the energy crisis and clean energy in the environment become an important issue. Energy that meets the above properties is solar energy. Utilization is highly dependent on climate and weather conditions in accordance with the geographical location of the place. Optimization of energy absorption needs to be done and this is usually done by conditioning or manipulating some parameters so that the level of energy absorption is more effective and efficient.This research is an expriment research by optimizing the absorption of heat energy to heat water according to climate and weather conditions in Pontianak, West Kalimantan. The variable to be conditioned or arranged so that the maximum heat transfer rate is the flow rate of the water fluid to be heated.The experimental results show that the water flow rate of 2450 ccm DHW Loop side for SHW has a temperature difference value on the exit side of the heat exchanger which is smaller than the others. This shows that the more effective the release and absorption of heat made by the fluid in the heat exchanger. Keywords– Solar energy, Solar Water Heater (SHW), fluid flow rate, heat transfer rate


Author(s):  
Ghulam Bary ◽  
Waqar Ahmed ◽  
Muhammad Sajid ◽  
Riaz Ahmad ◽  
Ilyas Khan

Higher order femtoscopy measured to examine the heat exchanger characterization of the fluid debris produced in the collisions and investigated a remarkable suppression in the bosons interferences measurement. The analogous suppression can be analyzed to explore the coherence of boson thermal particle production sources at unprecedented energies. We illustrate the particles emissions from radiated sources with statistical coherence which induce the thermal particles interferences to probe the peculiarity of the heated sources as well as the distinctions about the heat exchangers in the collisions at higher temperature. We perspicacious that the bosons seem to the pertinent aspirant of heat exchanger, and the normalized three particles correlators evaluate the existence of such hybrid phases significantly. The key point of this research is that we analyze the three particles correlations with their normalized correlations by difference equations to determine the characteristics of heat exchanger and its applications. With such distinctive and efficient approach, we observe a significant difference in the correlation functions at higher temperature and momenta regimes.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mirmanto Mirmanto ◽  
I Made Adi Sayoga ◽  
Zulkarnain Zulkarnain

ABSTRACTDue to population growth, industry advance and rapid development, fresh and comfortable air may be difficult to get. Conditioning the air to get comfort environment may be a basic demand for people, but the prices of the device and its operation for this purpose are expensive. This research tries to solve this problem but it is just only to know the capability of the heat exchanger  to transfer/ absorb heat and is not to cool the room to be below the ambient temperature. The working fluid used was clean water and the heat exchangers employed were parallel and serpentine which were made of copper pipes with a diameter of 1/4 inch and 1/2 inch (for the header). The volumetric flow rates used were 300 ml/minutes, 400 ml/minutes and 500 ml/minutes. While the heat that should be absorbed by the water from the room is 50 W, 100 W and 150 W. The results show that the effect of volumetric flow rate on heat exchanger performance and room temperature is insignificant. From the pressure drop results, the parallel pipe heat exchanger has lower pressure drops while the serpentine has higher pressure drops. 


Sign in / Sign up

Export Citation Format

Share Document