scholarly journals Formation control for multiple unmanned aerial vehicles in constrained space using modified artificial potential field

2017 ◽  
Vol 4 (2) ◽  
pp. 100-105 ◽  
Author(s):  
Hang Yin ◽  
Léa Cam ◽  
Utpal Roy
2020 ◽  
Vol 124 (1282) ◽  
pp. 1979-2000
Author(s):  
A. Mirzaee Kahagh ◽  
F. Pazooki ◽  
S. Etemadi Haghighi

ABSTRACTA formation control and obstacle avoidance algorithm has been introduced in this paper for the V-shape formation flight of fixed-wing UAVs (Unmanned Aerial Vehicles) using the potential functions method. An innovative vector approach has been suggested to fix the conventional challenge in employing the artificial potential field (APF) approach (the creation of local minimums). A method called variable repulsive circles (VRC) has been then presented aimed at designing proper flight paths tailored with functional limitations of fixed-wing UAVs in facing obstacles. Finally, the efficiency of the designed algorithm has been examined and evaluated for different flight scenarios.


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


2019 ◽  
Vol 42 (5) ◽  
pp. 942-950
Author(s):  
Kai Chang ◽  
Dailiang Ma ◽  
Xingbin Han ◽  
Ning Liu ◽  
Pengpeng Zhao

This paper presents a formation control method to solve the moving target tracking problem for a swarm of unmanned aerial vehicles (UAVs). The formation is achieved by the artificial potential field with both attractive and repulsive forces, and each UAV in the swarm will be driven into a leader-centered spherical surface. The leader is controlled by the attractive force by the moving target, while the Lyapunov vectors drive the leader UAV to a fly-around circle of the target. Furthermore, the rotational vector-based potential field is applied to achieve the obstacle avoidance of UAVs with smooth trajectories and avoid the local optima problem. The efficiency of the developed control scheme is verified by numerical simulations in four scenarios.


2016 ◽  
Vol 04 (03) ◽  
pp. 197-211 ◽  
Author(s):  
Zhixiang Liu ◽  
Chi Yuan ◽  
Xiang Yu ◽  
Youmin Zhang

This paper presents a leader-follower type of fault-tolerant formation control (FTFC) methodology with application to multiple unmanned aerial vehicles (UAVs) in the presence of actuator failures and potential collisions. The proposed FTFC scheme consists of both outer-loop and inner-loop controllers. First, a leader-follower control scheme with integration of a collision avoidance mechanism is designed as the outer-loop controller for guaranteeing UAVs to keep the desired formation while avoiding the approaching obstacles. Then, an active fault-tolerant control (FTC) strategy for counteracting the actuator failures and also for preventing the healthy actuators from saturation is synthesized as the inner-loop controller. Finally, a group of numerical simulations are carried out to verify the effectiveness of the proposed approach.


Author(s):  
Xu Zhu ◽  
Xun-Xun Zhang ◽  
Mao-De Yan ◽  
Yao-Hong Qu ◽  
Hai Lin

Considering three-dimensional formation control for multiple unmanned aerial vehicles, this paper proposes a second-order consensus strategy by utilizing the position and velocity coordinate variables. To maintain the specified geometric configuration, a cooperative guidance algorithm and a cooperative control algorithm are proposed together to manage the position and attitude, respectively. The cooperative guidance law, which is designed as a second-order consensus algorithm, provides the desired pitch rate, heading rate and acceleration. In addition, a synchronization technology is put forward to reduce the influence of the measurement errors for the cooperative guidance law. The cooperative control law, regarding the output of the cooperative guidance law as its input, is designed by deducing the state-space expression of both the longitudinal and lateral motions. The formation stability is analyzed to give a sufficient and necessary condition. Finally, the simulations for the three-dimensional formation control demonstrate the feasibility and effectiveness of the second-order consensus strategy.


Author(s):  
Bing Han ◽  
Ju Jiang ◽  
Chaojun Yu

This article develops a distributed adaptive fault-tolerant formation control scheme for the multiple unmanned aerial vehicles to counteract actuator faults and intermittent communication interrupt, where the issues on control input saturation and mismatched uncertainties are also addressed. The discontinuous communication protocol technique is exploited to achieve the stability of the formation system, if the conditions of dwell time and the rate of communication are satisfied. On the basis of the local information of neighboring unmanned aerial vehicles, a novel distributed adaptive mechanism is designed to estimate the bounds of actuator faults and uncertainties, where the input saturation is explicitly taken into consideration. The stability of the whole formation system under the designed fault-tolerant formation control strategy is analyzed using the Lyapunov approach. Finally, simulation results are presented to illustrate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document