scholarly journals Design and Implementation of Torque Control and Estimation for an Electric Hand-Tool

2020 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tian-Hua Liu ◽  
Cheng-Wei Peng

<p>This paper proposes the design and implementation of torque control and torque estimation for an electric hand-tool. This hand-tool does not require any torque transducer or any Hall-effect sensor. Only some low-cost resistances are used to measure the stator currents of a brushless DC motor, which is used to drive the hand-tool. Novel 3-phase current commands are proposed here to obtain greater torque than traditional 3-phase, square-wave current commands. The output torque of the hand-tool can be estimated and displayed by an LED display. A PI controller is used to achieve the current-loop control. A digital signal processor, TMS-320-F2808 that was manufactured by Texas Instruments, is used to execute the control and estimation algorithms. Experimental results show the correctness and feasibility of the proposed methods.</p>

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rafael Rodríguez-Ponce ◽  
Francisco Gustavo Mota-Muñoz

Robot technology has become an integral part of the automotive industry in several tasks such as material handling, welding, painting, and part assembly. Therefore, the knowledge and skills to control the electric motors in these manipulators are essential for undergraduate electrical engineering students. Currently, the digital signal processor (DSP) is the core chip in industrial motor-control drives; however, the implementation of DSP control algorithms can be quite challenging for an experienced programmer, even more so for the novice. Considerable research has been done on this topic, although authors usually focus on DSP-based motor drives using popular control techniques such as field-oriented control (FOC). Although highly efficient, this approach is usually reserved for postgraduate education due to its complex structure and functionality. In this paper, the authors present a modular servodrive design on a low-cost, general-purpose microcontroller using the direct torque control (DTC) method, an alternative known for greater simplicity and torque response, compared with FOC. The system design was based on Micropython language allowing the software structure to be more manageable and the code to be more understandable. This design will be useful to undergraduates and researchers with interests in motor control design.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 242 ◽  
Author(s):  
Stefano Ricci ◽  
Valentino Meacci

Stepper motors are employed in a wide range of consumer and industrial applications. Their use is simple: a digital device generates pulse-bursts and a direction bit towards a power driver that produces the 2-phase currents feeding the motor windings. Despite its simplicity, this open-loop approach fails if the torque load exceeds the motor capacity, so the motor and driver should be oversized at the expense of efficiency and cost. Field-Oriented closed-loop Control (FOC) solves the problem, and the recent availability of low cost electronics devices like Digital Signal Processors, Field Programmable Gate Arrays (FPGA), or even Microcontrollers with dedicated peripherals, fostered the investigation and implementation of several variants of the FOC method. In this paper, a simple and economic FOC torque control method for hybrid stepper motors is presented. The load angle is corrected accordingly to the actual shaft position through pulse-bursts and direction commands issued towards a commercial stepper driver, which manages the 2-phase winding currents. Thanks to the FPGA implementation, the control loop updates the electrical position every 50 μs only, thus allowing a load angle accuracy of −1/100 rad for a rotor velocity up to 750 rev/min, as shown in the reported experiments.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3904
Author(s):  
Do-Yun Kim ◽  
Jung-Hyo Lee

This paper proposes a permanent magnet synchronous machine (PMSM) table-based torque control method considering a variable DC-link voltage that can be used in a low cost DSP. The current reference generation based on two-dimensional look-up table (2D-LUT) is widely used for PMSM drives used in industrial applications because of its torque control performance and operation stability. In general, a 2D-LUT is established based on the flux and torque to overcome the variation in DC-link voltage. However, this method requires a flux estimator for estimating the instantaneous flux, which is defined as a division of the operating speed used to obtain the flux data. Therefore, to obtain the operating flux, a variable division calculation or complex controller is used, which can be difficult to process through a low cost digital signal processor. In this paper, a novel look-up table-based control method that uses the newly established speed-torque 2D-LUT is proposed. This 2D-LUT inherently implements data on the d-/q-axis currents throughout the operating regions, not only the speed and torque, but also the DC-link voltage variation. The proposed method was verified through an experiment on the torque control a variation in the DC-link voltage.


2017 ◽  
Vol 20 (2) ◽  
pp. 76
Author(s):  
S. Boukadida ◽  
S. Gdaim ◽  
A. Mtibaa

In this paper, a new design method of Direct Torque Control using Space Vector Modulation (DTC-SVM) of an Induction Machine (IM), which is based on Fault Tolerant Control (FTC) is proposed. Due to its complexity, the FTC implemented on a microcontroller and a Digital Signal Processor (DSP) is characterized by a calculating delay. To solve this problem, an alternative digital solution is used, based on the Field Programmable Gate Array (FPGA), which is characterized by a fast processing speed. However, as an FPGAs increase in size, there is a need for improved productivity, and this includes new design flows and tools. Xilinx System Generator (XSG) is a high-level block-based design tool that offers bit and cycle accurate simulation. This tool can automatically generate the Very High-Density Logic (VHDL) code without resorting to a tough programming, without being obliged to do approximations and more we can visualize the behavior of the machine before implementation which is very important for not damage our machine. Simulation and experimental results using Hardware In the Loop (HIL) of the FTC based DTC-SVM is compared with those of the conventional DTC. The comparison results illustrate the reduction in the torque and stator flux ripples. Our purpose is to reveal our algorithm efficiency and to show the Xilinx Virtex V FPGA performances in terms of execution time. 


2013 ◽  
Vol 432 ◽  
pp. 472-477
Author(s):  
Wei Fan ◽  
Tao Chen

This paper presents a robust fuzzy proportional-integral-derivative (PID) controller for brushless DC motor (BLDCM) control system. The hardware circuit of the BLDCM control system is designed and implemented using a digital signal processor (DSP) TMS320LF2407A and a monolithic BLDCM controller MC33035 as the core. Furthermore, a fuzzy PID controller, which combines the advantages of good robustness of fuzzy controller and high precision of conventional PID controller, is employed in the hardware system, thereby yielding a digital, intelligent BLDCM control system. Experimental results have shown that the control system can run steadily and control accurately, and have convincingly demonstrated the usefulness of the proposed fuzzy PID controller in BLDCM control system.


Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

<p>This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO). This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG) which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.</p>


Sign in / Sign up

Export Citation Format

Share Document