scholarly journals Simple Torque Control Method for Hybrid Stepper Motors Implemented in FPGA

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 242 ◽  
Author(s):  
Stefano Ricci ◽  
Valentino Meacci

Stepper motors are employed in a wide range of consumer and industrial applications. Their use is simple: a digital device generates pulse-bursts and a direction bit towards a power driver that produces the 2-phase currents feeding the motor windings. Despite its simplicity, this open-loop approach fails if the torque load exceeds the motor capacity, so the motor and driver should be oversized at the expense of efficiency and cost. Field-Oriented closed-loop Control (FOC) solves the problem, and the recent availability of low cost electronics devices like Digital Signal Processors, Field Programmable Gate Arrays (FPGA), or even Microcontrollers with dedicated peripherals, fostered the investigation and implementation of several variants of the FOC method. In this paper, a simple and economic FOC torque control method for hybrid stepper motors is presented. The load angle is corrected accordingly to the actual shaft position through pulse-bursts and direction commands issued towards a commercial stepper driver, which manages the 2-phase winding currents. Thanks to the FPGA implementation, the control loop updates the electrical position every 50 μs only, thus allowing a load angle accuracy of −1/100 rad for a rotor velocity up to 750 rev/min, as shown in the reported experiments.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3904
Author(s):  
Do-Yun Kim ◽  
Jung-Hyo Lee

This paper proposes a permanent magnet synchronous machine (PMSM) table-based torque control method considering a variable DC-link voltage that can be used in a low cost DSP. The current reference generation based on two-dimensional look-up table (2D-LUT) is widely used for PMSM drives used in industrial applications because of its torque control performance and operation stability. In general, a 2D-LUT is established based on the flux and torque to overcome the variation in DC-link voltage. However, this method requires a flux estimator for estimating the instantaneous flux, which is defined as a division of the operating speed used to obtain the flux data. Therefore, to obtain the operating flux, a variable division calculation or complex controller is used, which can be difficult to process through a low cost digital signal processor. In this paper, a novel look-up table-based control method that uses the newly established speed-torque 2D-LUT is proposed. This 2D-LUT inherently implements data on the d-/q-axis currents throughout the operating regions, not only the speed and torque, but also the DC-link voltage variation. The proposed method was verified through an experiment on the torque control a variation in the DC-link voltage.


Author(s):  
Amro Shafik ◽  
Salah Haridy

Computer Numerical Control (CNC) is a technology that converts coded instructions and numerical data into sequential actions that describe the motion of machine axes or the behavior of an end effector. Nowadays, CNC technology has been introduced to different stages of production, such as rapid prototyping, machining and finishing processes, testing, packaging, and warehousing. The main objective of this chapter is to introduce a methodology for design and implementation of a simple and low-cost educational CNC prototype. The machine consists of three independent axes driven by stepper motors through an open-loop control system. Output pulses from the parallel port of Personal Computer (PC) are used to drive the stepper motors after processing by an interface card. A flexible, responsive, and real-time Visual C# program is developed to control the motion of the machine axes. The integrated design proposed in this chapter can provide engineers and students in academic institutions with a simple foundation to efficiently build a CNC machine based on the available resources. Moreover, the proposed prototype can be used for educational purposes, demonstrations, and future research.


2020 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tian-Hua Liu ◽  
Cheng-Wei Peng

<p>This paper proposes the design and implementation of torque control and torque estimation for an electric hand-tool. This hand-tool does not require any torque transducer or any Hall-effect sensor. Only some low-cost resistances are used to measure the stator currents of a brushless DC motor, which is used to drive the hand-tool. Novel 3-phase current commands are proposed here to obtain greater torque than traditional 3-phase, square-wave current commands. The output torque of the hand-tool can be estimated and displayed by an LED display. A PI controller is used to achieve the current-loop control. A digital signal processor, TMS-320-F2808 that was manufactured by Texas Instruments, is used to execute the control and estimation algorithms. Experimental results show the correctness and feasibility of the proposed methods.</p>


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1554 ◽  
Author(s):  
Man Zhang ◽  
Imen Bahri ◽  
Xavier Mininger ◽  
Cristina Vlad ◽  
Hongqin Xie ◽  
...  

Due to their inherent advantages such as low cost, robustness and wide speed range, switched reluctance machines (SRMs) have attracted great attention in electrical vehicles. However, the vibration and noise problems of SRMs limit their application in the automotive industry because of the negative impact on driver and passengers’ comfort. In this paper, a new control method is proposed to improve the vibratory and acoustic behavior of SRMs. Two additional control blocks —direct force control (DFC) and reference current adapter (RCA)—are introduced to the conventional control method (average torque control (ATC)) of SRM. DFC is adopted to control the radial force in the teeth of the stator, since the dynamic of the radial force has a large impact on the vibratory performance. RCA is proposed to handle the trade-off between the DFC and ATC. It produces an auto-tuning current reference to update the reference current automatically depending on the control requirement. The effectiveness of the proposed control strategy is verified by experimental results under both steady and transient condition. The results show that the proposed method improves the acoustic performance of the SRM and maintains the dynamic response of it, which proves the potential of the proposed control strategy.


2018 ◽  
Vol 18 (07) ◽  
pp. 1840017 ◽  
Author(s):  
QIN YAO ◽  
XUMING ZHANG

Flexible needle has been widely used in the therapy delivery because it can advance along the curved lines to avoid the obstacles like important organs and bones. However, most control algorithms for the flexible needle are still limited to address its motion along a set of arcs in the two-dimensional (2D) plane. To resolve this problem, this paper has proposed an improved duty-cycled spinning based three-dimensional (3D) motion control approach to ensure that the beveled-tip flexible needle can track a desired trajectory to reach the target within the tissue. Compared with the existing open-loop duty-cycled spinning method which is limited to tracking 2D trajectory comprised of few arcs, the proposed closed-loop control method can be used for tracking any 3D trajectory comprised of numerous arcs. Distinctively, the proposed method is independent of the tissue parameters and robust to such disturbances as tissue deformation. In the trajectory tracking simulation, the designed controller is tested on the helical trajectory, the trajectory generated by rapidly-exploring random tree (RRT) algorithm and the helical trajectory. The simulation results show that the mean tracking error and the target error are less than 0.02[Formula: see text]mm for the former two kinds of trajectories. In the case of tracking the helical trajectory, the mean tracking error target error is less than 0.5[Formula: see text]mm and 1.5[Formula: see text]mm, respectively. The simulation results prove the effectiveness of the proposed method.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2015 ◽  
Author(s):  
Ioannis Vlachos ◽  
Taskin Deniz ◽  
Ad Aertsen ◽  
Arvind Kumar

There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks. Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC besides steering the system back to a healthy state, it also recovers the computations performed by the underlying network. Finally, using our theory we isolate the role of single neuron and synapse properties in determining the stability of the closed-loop system.


Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

<p>This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO). This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG) which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document