scholarly journals A four-sector polarization converter integrated in a calcite crystal

2018 ◽  
Vol 42 (3) ◽  
pp. 401-407 ◽  
Author(s):  
S. V. Karpeev ◽  
V. V. Podlipnov ◽  
S. N. Khonina ◽  
V. D. Paranin ◽  
A. S. Reshetnikov

A new approach to the implementation of sectorial plates for beam polarization conversion is proposed. Using a newly developed  etching technology, a four-sector polarization converter integrated into a calcite crystal is implemented. A four-sector polarization converter, which provides a pairwise orthogonal polarization state of the sectors, is fabricated and experimentally characterized. A comparison is made of inter-sector joints of the integrated converter with those of a converter composed of individual wave-plate fragments. Analysis of the spectral properties of such a converter is carried out, wavelengths at which the necessary polarization conversion takes place are determined. The quasi-periodic repetition of phase matching conditions is experimentally shown to slow down  with increasing wavelength.

Author(s):  
Gyeongyeong Lee ◽  
Yeong-Hoon Noh ◽  
In-Gon Lee ◽  
Ic-Pyo Hong ◽  
Jong-Gwan Yook ◽  
...  

Abstract 3D printing using digital light processing (DLP) technology has been studied in various fields because of its ability to create complex shapes through a simple process. In this study, DLP 3D printing was employed in the implementation of the metasurface-based dual-linear polarization converter (DLPC). The unit cell of the metasurface-based DLPC for linear polarization conversion was designed consisting of the upper and lower dipole-pair antennas connected through vias and a shielding layer that electrically shields the antennas from each other, and its fabrication was based on the characterization results of the dielectric properties of the photocurable substrate materials and electrical properties of the conductive materials used for synthesizing the metasurface. The printability evaluation of dipole pairs, vias, and a shielding layer was carried out to implement the detailed structures of the DLPC in 3D printing. The electromagnetic wave transmission characteristics of the 3D-printed 8×8 array DLPC demonstrated an orthogonal polarization conversion, as predicted by the simulation results. This study confirmed that the DLP-based 3D printing technology can go beyond the existing functions of manufacturing objects and can be applied to the implementation of various electronics based on different meta-structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thi Kim Thu Nguyen ◽  
Thi Minh Nguyen ◽  
Hong Quang Nguyen ◽  
Thanh Nghia Cao ◽  
Dac Tuyen Le ◽  
...  

AbstractA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42–7.6 GHz and 13–13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.


2021 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Man Zhang ◽  
Weihua Wang ◽  
Zhengyong Song

Abstract Utilizing the phase transition characteristic of vanadium dioxide, we present a metamaterial configuration to achieve both reflective and transmissive cross-polarization converters. When vanadium dioxide is metal, the design behaves as a reflective cross-polarization converter. It consists of metallic grating, topas spacer, and vanadium dioxide film. Polarization conversion ratio is more than 90% in the frequency range from 4.80 THz to 13.13 THz. When vanadium dioxide is insulator, the design behaves as a transmissive cross-polarization converter using cascaded metallic gratings with rotation angle . High-efficiency broadband cross-polarization wave conversion is achieved in the frequency band of 0.50-4.75 THz. The effects of oblique incidence on reflective and transmissive modes are studied on polarization conversion. The results tell that cross-polarization conversion is better when incident angle is in the range of -. The designed metamaterial may have a certain inspiration for the research of terahertz multifunctional polarization converter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bilawal Khan ◽  
Babar Kamal ◽  
Sadiq Ullah ◽  
Imran Khan ◽  
Jawad Ali Shah ◽  
...  

Abstract The manipulation of polarization state of electromagnetic waves is of great importance in many practical applications. In this paper, the reflection characteristics of a thin and dual-band metasurface are examined in the microwave frequency regime. The metasurface consists of a 22 × 22 element array of periodic unit cells. The geometry of the unit cell consists of three layers, including a 45° inclined dipole shape metal patch on top, which is backed by a 1.6 mm thick FR-4 substrate in the middle, and a fully reflective metallic mirror at the bottom. The proposed surface is exposed to horizontally (x) or vertically (y) polarized plane waves and the co and cross polarization reflection coefficients of the reflected waves are investigated experimentally in the 6–26 GHz frequency range. The metasurface is designed to convert incident waves of known polarization state (horizontal or vertical) to orthogonal polarization state (vertical and horizontal) in two distinct frequency bands, i.e. 7.1–8 GHz and 13.3–25.8 GHz. In these two frequency bands the simulated and experimental results are in good agreement. The polarization conversion ratio (PCR) of the surface is greater than 95% in the targeted frequency bands. A detailed parametric analysis of the metasurface is also discussed in this work and it has been estimated that the surface has the additional ability to convert linearly polarized waves to circularly polarized waves at several distinct frequencies. The proposed metasurface can be utilized in sensor applications, stealth technology, electromagnetic measurements, and antennas design.


2013 ◽  
Vol 312 ◽  
pp. 625-630
Author(s):  
Yan Hong Wang ◽  
Gao Wang ◽  
Ji Liu

In this paper, the general theory and polarization property of RB in single mode fiber is discussed. According to the theoretical analysis results, the bidirectional carrying system with a polarization rotating device for analog radio frequency (RF) signal is set up. The relationship of the system CRN and the different polarization state by the polarization rotating device is studied. The results show that the RB light polarization state of backward fiber end can keep to perpendicular to that of forward light when backward lights polarization is orthogonal forward lights polarization. So utilizing orthogonal polarization method for decreasing CRN can be carried on. The system performance is analyzed by simulation. The simulation results show that CRN of the bidirectional communication system on a single mode fiber can be inhibited by using the method and RB light can decrease by an order of magnitude.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Neimule Menke ◽  
Baoli Yao ◽  
Yingli Wang ◽  
Yi Chen

The photochromic and photoanisotropic properties of materials can be used in ordinary and polarization holographic recording respectively. Fulgides are well known as thermally irreversible organic photochromic compounds. And it is found that there exists photoinduced anisotropy in fulgide-doped polymeric films. In this report, a 3-indoly-benzylfulgimide/PMMA film was studied as a holographic storage media. First, the spectra and dynamics of photochromic and photoanisotropic properties of the sample are measured or calculated. Second, the diffraction efficiency (DE) dynamics at 633 nm of four kinds of different polarization holograms recorded in this sample are measured. The maximum DE value about 1% was gotten. Third, the DE spectra and DE dynamics are theoretically calculated in detail, and a good correlation of theoretically derived DE dynamic curves and the measured experimental curves was found. From the DE spectra, it is known that at the wavelengths less than 450 nm or greater than 700 nm, the nondestructive reading can be realized. The DWPS obtained in the experiments are same with the theortically deduced ones, which shows that in the orthogonal polarization holography, the polarization state of the diffracted light is orthogonal to that of the reconstruction light, which is very important to increase the SNR of the holographic storage. And all these results are applied and proved to be correct in high-density holographic image storage experiment. The area density of 2×108 bits/cm2 was obtained, and the encoded data was retrieved without error.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biswarup Rana ◽  
In-Gon Lee ◽  
Ic-Pyo Hong

In this paper, an electronically reconfigurable polarization converter unit cell operating at X-band is proposed. The polarization converter unit cell consists of a passive patch, a phase shifter, and an active patch. There are two PIN diodes on the active patch. By switching the bias conditions of those PIN diodes, an electronically reconfigurable polarization converter is conceived. Both the passive and active patches are circular, and there are circular types of slots on both patches to enhance the operating bandwidth. To compensate for the capacitance introduced by PIN diodes, an equivalent capacitance structure is introduced on the active patch. 2 × 2 unit cells are designed to check the performance of the unit cell for polarization conversion applications. In addition, a novel type of experimental characterization technique is proposed to check the performance of polarization conversion using 2 × 2 unit cells. Two WR-90 waveguide sections, two rectangular to square sections, and a power supply are taken for the measurements. The rectangular to square waveguide transition section is designed in such a way so that 2 × 2 unit cells can be perfectly adjusted on the transition section and the performance of the 2 × 2 unit cells can be measured. The simulation results of the 8 × 8 array are also added to a miniaturized X-band horn antenna to check the performance of the overall array.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed H. Dorrah ◽  
Michele Tamagnone ◽  
Noah A. Rubin ◽  
Aun Zaidi ◽  
Federico Capasso

Abstract As a classical or quantum system undergoes a cyclic evolution governed by slow change in its parameter space, it acquires a topological phase factor known as the geometric or Berry phase. One popular manifestation of this phenomenon is the Gouy phase which arises when the radius of curvature of the wavefront changes adiabatically in a cyclic manner, for e.g., when focused by a lens. Here, we report on a new manifestation of the Berry phase in 3D structured light which arises when its polarization state adiabatically evolves along the optical path. We show that such a peculiar evolution of angular momentum, which occurs under free space propagation, is accompanied by an accumulated phase shift that elegantly coincides with Berry’s prediction. Unlike the conventional dynamic phase, which accumulates monotonically with propagation, the Berry phase observed here can be engineered on demand, thereby enabling new possibilities; such as spin-dependent spatial frequency shifts, and modified phase matching in resonators and nonlinear interactions. Our findings expand the laws of wave propagation and can be applied in optics and beyond.


Sign in / Sign up

Export Citation Format

Share Document