scholarly journals Choosing the aerodynamic configuration of a subsonic cruise missile

2019 ◽  
Vol 18 (3) ◽  
pp. 59-66
Author(s):  
M. A. Kovalev ◽  
A. N. Nikitin

The paper presents a comparison of two aerodynamic configurations of subsonic cruise missiles, characterized by the use of swept-back and forward-swept wings. The results of wind tunnel tests with the use of an automated measurement system characterizing the dependence of the lift and drag coefficients in a sufficiently wide range of angles of attack are presented. This allows us to compare the aerodynamic quality of the cruise missile models under investigation. The analysis of the results of experiments with the models and calculations in conditions of steady-state low-altitude horizontal flight revealed that the configurations of cruise missiles with a moderately swept wing, selected for comparison, have similar aerodynamic characteristics. Both configurations ensure the mode of flight at a given altitude and velocity in the range of the best angles of attack (maximum aerodynamic quality). Missiles with swept-back wings have better aerodynamic performance in terms of maximum aerodynamic quality, while the lift increment due to reduced trim losses for the forward-swept wing configuration only partially compensates the difference of the aerodynamic characteristics of the alternatives under consideration. Therefore, it is concluded that the choice of aerodynamic configuration of a subsonic cruise missile with a swept-back wing is preferable.

2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


2020 ◽  
Vol 10 (10) ◽  
pp. 3404
Author(s):  
Bing Ji ◽  
Zenggang Zhu ◽  
Shijun Guo ◽  
Si Chen ◽  
Qiaolin Zhu ◽  
...  

An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60°~70° as the flight velocity decreases from 5 m/s to 1 m/s during landing.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 257
Author(s):  
Samuel Mitchell ◽  
Iheanyichukwu Ogbonna ◽  
Konstantin Volkov

The design of wind turbines requires a deep insight into their complex aerodynamics, such as dynamic stall of a single airfoil and flow vortices. The calculation of the aerodynamic forces on the wind turbine blade at different angles of attack (AOAs) is a fundamental task in the design of the blades. The accurate and efficient calculation of aerodynamic forces (lift and drag) and the prediction of stall of an airfoil are challenging tasks. Computational fluid dynamics (CFD) is able to provide a better understanding of complex flows induced by the rotation of wind turbine blades. A numerical simulation is carried out to determine the aerodynamic characteristics of a single airfoil in a wide range of conditions. Reynolds-averaged Navier–Stokes (RANS) equations and large-eddy simulation (LES) results of flow over a single NACA0012 airfoil are presented in a wide range of AOAs from low lift through stall. Due to the symmetrical nature of airfoils, and also to reduce computational cost, the RANS simulation is performed in the 2D domain. However, the 3D domain is used for the LES calculations with periodical boundary conditions in the spanwise direction. The results obtained are verified and validated against experimental and computational data from previous works. The comparisons of LES and RANS results demonstrate that the RANS model considerably overpredicts the lift and drag of the airfoil at post-stall AOAs because the RANS model is not able to reproduce vorticity diffusion and the formation of the vortex. LES calculations offer good agreement with the experimental measurements.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012078
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The aerodynamic characteristics of NACA4412 airfoil with different pitching motion elements were compared and analyzed based on CFD in this research. The results are acquired as follows: the difference between the lift and drag coefficients of the airfoil during pitch up and pitch down motions becomes larger with the increase of the pitching amplitude or initial angle of attack; as the pitching amplitude increases, the lift coefficient grows slightly greater and the drag coefficient grows much greater; as the initial angle of attack increases, the lift coefficient grows much greater and the drag coefficient grows slightly; the smaller the attenuation frequency is, the larger the lift-to-drag ratio of the airfoil will be.


Author(s):  
S.Yu. Ploskov

The development of parachute precision aerial delivery systems (PADS) has been going on since 1940s. Relying on the analysis of the aerodynamic characteristics of various gliding parachutes, the paper specifies the aerodynamic configuration for modern parachute precision aerial delivery systems, determines the types and considers the possibility of unifying the design of the main parachutes of such systems. The paper describes the history of gliding parachutes, summarizes the experience of developing such parachutes, and considers the evolution of maneuverable and steerable parachutes. In our study, we introduce and substantiate a new for the Russian practice classification of parachutes with aerodynamic quality. First, aerodynamic characteristics of various gliding parachutes were generalized and the main requirements for parachute PADS were indicated. Then, modern combined parachute PADS of Airbone Systems, USA, developed on the basis of double-surface parafoil parachutes were analyzed and classified with the emphasis on the types of modern systems. Since unification is most responsible for reducing the cost of industrial production of any technical systems, we considered the issues of possible unification of parachute PADS. Findings of research show that the unification of modern combined PADS depends on the common elements of control systems. It is worth noting that unification for systems of the ultralight class in terms of main parachutes is possible when using individual parachutes. For parachute systems of the middle and heavy class, intraspecific unification is possible through the use of single parachute modules.


2020 ◽  
Vol 10 (19) ◽  
pp. 6773
Author(s):  
Haode Hu ◽  
Dongli Ma

Wing-in-ground craft often encounter waves when flying over the sea surface, and the ground effect is more complicated than that of flat ground. Therefore, the aerodynamic characteristics of the NACA 4412 airfoil in proximity to wavy ground for a wide range of angles of attack is studied by solving the Reynolds Averaged Navier–Stokes equations. The validation of the numerical method is carried out by comparing it with the experimental data. The results show that the aerodynamic coefficients will fluctuate periodically when the airfoil moves over wavy ground at a small ride height. Except for the angle of attack of 0°, the fluctuation trend of aerodynamic coefficients at other angles of attack is the same. The analysis of aerodynamic fluctuation amplitude found that the medium angle of attack should be selected as the design cruise angle of attack for wing-in-ground craft. The time-averaged aerodynamic coefficients in the case of wavy ground are almost the same as those of flat ground. Hence, wavy ground mainly causes a fluctuation in aerodynamic coefficients. Considering the difference between aerodynamic coefficients at the angle of attack of 0° and at other angles of attack, the flow field structure at an angle of attack of 0° and 4° is analyzed. The results reveal the aerodynamic characteristics of the airfoil moving over wavy ground, which gives a deeper understanding of the ground effect in the conditions of wavy surface/ground. This has a certain guiding significance for the design of wing-in-ground craft.


Author(s):  
Xiaochuan Yang ◽  
Wei Li ◽  
Yuntao Wang ◽  
Hao Wang ◽  
Hao Yue ◽  
...  

With the continuous development and widespread attention of electric propulsion technology in traditional transportation fields such as automobiles and trains, the distributed propeller propulsion technology applied to electric or hybrid electric medium and small scale aircrafts has become a new topic in aviation research. This paper presents a preliminary design scheme of a distributed propeller electric propulsion transport aircraft firstly. Then, based on Reynolds average N-S equations, combined with the SA turbulence model, and replaced the real distributed propellers with simplified disk model, the aerodynamic characteristics of the aircraft with and without slipstream under the condition of low speed and high thrust at low altitude are analyzed. Finally, the effects of pressure distribution, pitching moment characteristics and wing flow on distributed propellers are studied in detailed. The results show that the lift and drag of the aircraft with slipstream are both larger than without slipstream and with slipstream effect, the pitching moment of the wing decreases, the pitching moment of the tail increases. When the tail is far away or completely inside the region of slipstream, the difference of pitching moment of the tail with and without slipstream is little, and the difference is obvious as the tail is only partially in the region of slipstream; When the diameter of distributed propellers is far larger than the wing thickness, more propeller power is used to shove air flow away from the surface area of the wing, and resulting in an insignificant increase in the coefficient of lift.


2019 ◽  
Vol 50 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Christine Holyfield ◽  
Sydney Brooks ◽  
Allison Schluterman

Purpose Augmentative and alternative communication (AAC) is an intervention approach that can promote communication and language in children with multiple disabilities who are beginning communicators. While a wide range of AAC technologies are available, little is known about the comparative effects of specific technology options. Given that engagement can be low for beginning communicators with multiple disabilities, the current study provides initial information about the comparative effects of 2 AAC technology options—high-tech visual scene displays (VSDs) and low-tech isolated picture symbols—on engagement. Method Three elementary-age beginning communicators with multiple disabilities participated. The study used a single-subject, alternating treatment design with each technology serving as a condition. Participants interacted with their school speech-language pathologists using each of the 2 technologies across 5 sessions in a block randomized order. Results According to visual analysis and nonoverlap of all pairs calculations, all 3 participants demonstrated more engagement with the high-tech VSDs than the low-tech isolated picture symbols as measured by their seconds of gaze toward each technology option. Despite the difference in engagement observed, there was no clear difference across the 2 conditions in engagement toward the communication partner or use of the AAC. Conclusions Clinicians can consider measuring engagement when evaluating AAC technology options for children with multiple disabilities and should consider evaluating high-tech VSDs as 1 technology option for them. Future research must explore the extent to which differences in engagement to particular AAC technologies result in differences in communication and language learning over time as might be expected.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document