Simulation of Manufacturing System at Different Part Mix Ratio and Routing Flexibility

2016 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Rajeev Kumar

In present market scenario, manufacturing industries need to focus towards capability to provide high product variety and availability of products at the point of demand. This situation creates pressure on manufacturing firms to be flexible and to reduce lead time to fulfill customer's demand on time. Flexible Manufacturing Systems (FMS) with appropriate Routing Flexibility (RF) in addition to different scheduling strategies is the appropriate manufacturing alternative in such a case. Such systems are capable to adjust changing product mix yet providing higher performance in dynamic business environment. This research work presents simulation analysis of a FMS with varying Routing Flexibility (RF) level at different part mix ratio to validate this. The results show that varying part mix ratio has appreciable effect on the system performance, when no routing flexibility is present in the system. Also for all product mix ratios, increase in routing flexibility levels continues to improve MST performance with diminishing return.

2019 ◽  
Vol 957 ◽  
pp. 195-202 ◽  
Author(s):  
Elizaveta Gromova

With the onset of the Fourth Industrial Revolution, the business environment becomes inherent in changes that occur with maximum speed, as well as characterized by the systemic nature of the consequences. One of them is the transformation of operational management models in industrial enterprises. The modern manufacturing system should focus not only on speed of response and flexibility, but also on the cost and quality of products. Integration of effective models: agile manufacturing, quick response manufacturing and lean production, in order to extract the best from them is proposed. The purpose of this study is to analyze this flexible manufacturing system and to relate it to the current state of the Russian industrial development. Theoretical and practical aspects of this model are presented. The examples of the flexible models introduction in the Russian industrial sector is allocated. The conclusion about the necessity of the flexible manufacturing systems implementation for the Russian industrial development is drawn.


2015 ◽  
Vol 799-800 ◽  
pp. 1410-1416
Author(s):  
Guanghsu A. Chang ◽  
William R. Peterson

Increasing global competition, shrinking product life cycles, and increasing product mix are defining a new manufacturing environment in world markets. This paper presents a case problem using Taguchi Method to find optimum design parameters for a Flexible Manufacturing System (FMS). A L8 array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to study performance characteristics of selected manufacturing system design parameters (e.g. layout, AGVs, buffers, and routings) with consideration of product mix demand. Various design and performance parameters are evaluated and compared for the original and the improved FMS. The results obtained by this method may be useful to other researchers for similar types of applications.


Author(s):  
Xi Vincent Wang ◽  
Lihui Wang

In recent years, Cloud manufacturing has become a new research trend in manufacturing systems leading to the next generation of production paradigm. However, the interoperability issue still requires more research due to the heterogeneous environment caused by multiple Cloud services and applications developed in different platforms and languages. Therefore, this research aims to combat the interoperability issue in Cloud Manufacturing System. During implementation, the industrial users, especially Small- and Medium-sized Enterprises (SMEs), are normally short of budget for hardware and software investment due to financial stresses, but they are facing multiple challenges required by customers at the same time including security requirements, safety regulations. Therefore in this research work, the proposed Cloud manufacturing system is specifically tailored for SMEs.


Author(s):  
Abdul Salam Khan ◽  
Khawer Naeem ◽  
Raza Ullah Khan

An abrupt change requires a robust and flexible response from a manufacturing system. Dedicated Manufacturing System (DMS) has been a long practiced taxonomy for mass production and minimum varieties. In contrast, Flexible Manufacturing System (FMS) has been introduced for responding to quantity as well as variety issues. This study considers both production taxonomics by using a multi objective model of cost and time. An Integer Linear Programming (ILP) formulation is presented and subsequently validated. The analysis procedure is administered in two phases. In the first phase, comparison of production cost and process time in DMS and FMS is presented. The model is implemented by using an exact solution approach and results show that FMS is a viable option, compared to DMS, according to the criteria of cost, time, and productivity. In the second phase, sensitivity analysis is performed by using several FMS (n) and the impact of cells selection on the performance of system is studied. It is concluded that n=1 (single cell-based FMS) is more relevant for cost minimization; however, n = 6 is a suitable candidate for producing more quantity in given time horizon (process time minimization). Lastly, key findings are reported, and future research avenues are provided.


SIMULATION ◽  
2019 ◽  
Vol 95 (11) ◽  
pp. 1085-1096 ◽  
Author(s):  
Abdessalem Jerbi ◽  
Achraf Ammar ◽  
Mohamed Krid ◽  
Bashir Salah

The Taguchi method is widely used in the field of manufacturing systems performance simulation and improvement. On the other hand, Arena/OptQuest is one of the most efficient contemporary simulation/optimization software tools. The objective of this paper is to evaluate and compare these two tools applied to a flexible manufacturing system performance optimization context, based on simulation. The principal purpose of this comparison is to determine their performances based on the quality of the obtained results and the gain in the simulation effort. The results of the comparison, applied to a flexible manufacturing system mean flow time optimization, show that the Arena/OptQuest optimization platform outperforms the Taguchi optimization method. Indeed, the Arena/OptQuest permits one, through the lowest experimental effort, to reliably minimize the mean flow time of the studied flexible manufacturing system more than the Taguchi method.


2019 ◽  
Vol 18 (03) ◽  
pp. 469-485
Author(s):  
Surinder Kumar ◽  
Tilak Raj ◽  
Rajesh Attri

The excessive competition in domestic as well as international market has forced the manufacturing organizations to adopt advance manufacturing systems such as flexible manufacturing system (FMS). Adoption of these systems has resulted into increased productivity and better quality products. In order to continue their presence in cut-throat competitive environment, the manufacturing organizations are exploring the flexibility options of FMS. In order to analyze the flexibility options of FMS, an endeavor has been performed to identify the critical factors (CFs) that are pertinent to the flexibility of FMS. These CFs have a reflective impact in designing of FMS. After ascertaining these CFs, interpretive structural modeling (ISM) and MICMAC approach have been used to establish the structural relationships among these CFs to develop a hierarchical model. The verdicts of this exploration may assist managers to analyze the flexibility options of FMS in their organizations.


2018 ◽  
Vol 25 (1) ◽  
pp. 280-296 ◽  
Author(s):  
Ram Prakash ◽  
Sandeep Singhal ◽  
Ashish Agarwal

Purpose The research paper presents analysis and prioritization of barriers influencing the improvement in the effectiveness of manufacturing system. The purpose of this paper is to develop an integrated fuzzy-based multi-criteria decision-making (F-MCDM) framework to assist management of the case company in the selection of most effective manufacturing system. The framework helps in prioritizing the manufacturing systems on the basis of their effectiveness affected by the barriers. Design/methodology/approach In this paper, on the basis of experts’ opinion, five barriers have been identified in a brain-storming session. The problem of prioritization of manufacturing system is a multi-criteria decision-making (MCDM) problem and hence is solved by using the F-MCDM approach using dominance matrix. Findings Manufacturing systems’ effectiveness for Indian industries is influenced by barriers. The prioritization of manufacturing systems depends on qualitative factor decision-making criteria. Among the manufacturing systems, leagile manufacturing system is given the highest priority followed by lean manufacturing system, agile manufacturing system, flexible manufacturing system and cellular manufacturing system. Research limitations/implications The selection of an appropriate manufacturing system plays a vital role for sustainable growth of the manufacturing company. In the present work, barriers which influence the effectiveness of manufacturing system have been identified. On the basis of degree of influence of barriers on the effectiveness of the manufacturing system, five alternative manufacturing systems are prioritized. The framework will help the management of the case company to take reasonable decision for the adoption of the appropriate manufacturing system. Practical implications The results of the research work are very useful for the manufacturing companies interested in analyzing the alternative manufacturing systems on the basis of their effectiveness and their sensitivity toward various barriers. The management of Indian manufacturing company will take decision to adopt a manufacturing system whose effectiveness is least sensitive toward barriers. Effectiveness of such manufacturing system will improve with time without having retardation due to barriers. With improved effectiveness of the manufacturing system, the manufacturing company would be able to survive with global competition. The result of the present work is based on the inputs from the case company and may vary for the other manufacturing company. In the present work, only five alternative manufacturing systems and five barriers have been considered. To obtain the better result, MCDM approach with more number of alternative manufacturing systems and barriers might be considered. Originality/value The research work is based on the fuzzy analytic hierarchy process framework and on the case study conducted by the authors. The work carried out is original in nature and based on the real-life case study.


Author(s):  
Mangey Ram ◽  
Nupur Goyal

Manufacturing systems are increasingly becoming automated and complex in nature. Highly reliable and flexible manufacturing systems (FMSs) are the necessity of manufacturing industries to fulfill the increasing customized demands. Worldwide, FMSs are used in industries to attain high productivity in production environments with rapidly and continuously changing manufactured goods structures and demands. Reliability prediction plays a very significant role in system design in the manufacturing industry, and two crucial issues in the prediction of system reliability are failures of equipment and system configuration. This novel work presents a stochastic model to analyze the performance of an FMS through its reliability characteristics, in the concern of its equipment. To improve the reliability of FMS, determine the sensitivity of the reliability measures of FMS. FMS consists of many components such as machine tools like CNC, automatic handling and material storage, controller and robot for serving load. The designed system is studied by using the Markov process, supplementary variable technique, Laplace transformation, coverage factor and Gumbel–Hougaard family copula to obtain various reliability measures. For some realistic approach, particular cases and graphical illustrations are also obtained.


2006 ◽  
Vol 505-507 ◽  
pp. 1015-1020
Author(s):  
Yunn Lin Hwang ◽  
Shen Jenn Huang

In this paper, a nonlinear recursive method for the dynamic and kinematic analysis of a closed-loop flexible manufacturing system is presented. The kinematic and dynamic models are developed using absolute reference, joint relative, and elastic coordinates as well as joint reaction forces. This recursive method leads to a system of loosely coupled equations of motion. In a closed-loop manufacturing system, cuts are made at selected secondary joints in order to form spanning tree structures. Compatibility conditions and reaction force relationships at the secondary joints are adjoined to the equations of open-loop manufacturing systems in order to form closed-loop kinematic and dynamic equations. Using the sparse matrix structure of these equations and the fact that the joint reaction forces associated with elastic degrees of freedom do not represent independent variables, a method for decoupling the joint and elastic accelerations is developed. Unlike existing recursive formulations, this method does not require inverse or factorization of large nonlinear matrices. The application of nonlinear recursive method in kinematic and dynamic analysis of closed-loop manufacturing systems is also discussed in this paper. The use of the numerical algorithm developed in this investigation is illustrated by a closed-loop flexible four-bar mechanism.


Sign in / Sign up

Export Citation Format

Share Document