scholarly journals The formation of ceramide from sphingomyelin is associated with cellular apoptosis.

1998 ◽  
Vol 45 (2) ◽  
pp. 287-297 ◽  
Author(s):  
G Dawson ◽  
R Goswami ◽  
J Kilkus ◽  
D Wiesner ◽  
S Dawson

The apoptotic response of the immature B-cell to the cross-linking of surface IgM receptors provides a good model for cell death and we show in WEHI-231 B-cells that the time course of apoptosis corresponds to the increased formation of ceramide, as measured either by mass (using the diacylglycerol kinase method) or radiolabelling with [3H]palmitate. Inhibitors of sphingosine biosynthesis have no effect on cell death induced by anti-IgM in WEHI-231 but inhibitors of ceramidase accelerate apoptosis, suggesting that activation of sphingomyelinase is the key event in apoptosis. We have demonstrated this by in vitro assay of neutral sphingomyelinase. Apoptosis is also important in normal brain development and neuronal survival is dependent upon phosphatidylinositol 3-kinase (PI3-kinase) activation by growth factors (insulin, nerve growth factor etc.). Withdrawal of these growth factors or inhibition of PI3-kinase with wortmannin or LY294002 activated the pro-apoptotic CPP32 (Yama/Apopain/caspase 3, EC 3.4.22), activated neutral sphingomyelinase and increased ceramide formation in an immortalized dorsal root ganglion cell line F-11. Protection against apoptosis can be achieved by overexpression of the bc12 family of proteins or addition of drugs which elevate cAMP levels. cAMP protects against apoptosis induced by either wortmannin or staurosporine. The specificity for cAMP was confirmed by showing protection with the specific agonist (Sp)cAMPS and increased killing with the antagonist (Rp)cAMPS. However, cAMP did not protect against ceramide killing, suggesting that there are at least two major pathways of apoptosis in neuronal cells.

Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Author(s):  
Matthew B. Fisher ◽  
Nicole Söegaard ◽  
David R. Steinberg ◽  
Robert L. Mauck

Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued over the past two decades. Although biochemical and biomechanical properties on the order of the native tissue have been achieved (1–5), several in-vitro and in-vivo studies indicate that increased tissue maturity may limit the ability of engineered constructs to remodel and integrate with surrounding cartilage, although results are highly variable (2, 6–8). Thus, “static” measures of construct maturity (e.g. compressive modulus) upon implantation may not be the best indicators of in-vivo success, which likely requires implanted TE constructs to mature, remodel, and integrate with the host over time to achieve optimal results. We recently introduced the concept of “trajectory-based” tissue engineering (TB-TE), which is based on the general hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a better predictor of in-vivo success (9). As a first step in evaluating this concept, in the current study we hypothesized that time-dependent increases in equilibrium modulus (a metric of growth) would be correlated to ability of constructs to integrate to cartilage using an in-vitro assay. To test this hypothesis, the current objective was to determine and model the time course of maturation of TE constructs during in-vitro culture and to assess the ability of these constructs to integrate to cartilage at various points during their maturation.


1997 ◽  
Vol 10 (6) ◽  
pp. 351-357 ◽  
Author(s):  
W. M. Lush ◽  
A. S. Opat ◽  
F. Nie ◽  
Adrienne E. Clarke

2005 ◽  
Vol 24 (11) ◽  
pp. 573-580 ◽  
Author(s):  
N Mohorko ◽  
N Kregar-Velikonja ◽  
G Repovs ◽  
M Gorensek ◽  
M Bresjanac

Although Hoechst 33342 (H342) is frequently used to label donor cells in cell transplantation research, it has been noted that it might secondarily label the host cells. Furthermore, its potential toxicity leading to cell death has been described. We studied the time course of H342 redistribution from the primary labeled rat bone marrow stromal cells (rBMSC) into the non-labeled rBMSC population over 7 days in culture; we evaluated the nuclear H342 fluorescence intensity as a possible criterion for distinguishing the primary from the secondary labeled cells, and determined the viability of rBMSC after an overnight incubation in 1 mg/mL of H342. H342 labeled / 50% of the initially non-labeled cells within the first 6 hours and almost 90% within a week.Nuclear fluorescence intensity was a reliable criterion for distinguishing primary and secondary labeled cells within the first 24 hours, but less so at later time points. The percentage of either apoptotic or necrotic cells did not rise acutely after the overnight incubation in 1 mg/mL of H342. Although a 12-hour incubation of rBMSC in 1 mg/mL of H342 did not cause acute cell death, H342 rapidly and extensively redistributed into non-labeled cells, which makes H342 a relatively unsuitable marker for cell transplantation research.


1991 ◽  
Vol 157 (1) ◽  
pp. 349-366 ◽  
Author(s):  
C. M. Wood ◽  
S. F. Perry

A new in vitro assay was developed and critically characterized to measure the rate of CO2 excretion by trout red blood cells (RBCs) from HCO3- in their natural plasma under normal in vivo conditions of acid-base status. The assay is based on the addition of [14C]bicarbonate to the whole blood and collection of the resultant 14CO2 in the overlying gas phase. The assay simulates the exposure of blood passing through the gills, and measured CO2 excretion rates are representative of those occurring in vivo. Rates are linear over the 3 min time course of the assay, related to haematocrit in a non-linear fashion, elevated by the addition of carbonic anhydrase, reduced by blockade with acetazolamide, and sensitive to variations of equilibration PCO2. Large variations in plasma [HCO3-] have only a small effect on CO2 excretion rates when the blood is chronically equilibrated at these levels. Acute elevations in [HCO3-], however, create a non-equilibrium situation, resulting in large increases in CO2 excretion. When the blood is acidified, to duplicate typical post-exercise metabolic acidosis, adrenaline causes a marked inhibition of RBC CO2 excretion. The response is transient, reaching a peak 5–8 min after addition of adrenaline and disappearing by 30–60 min. The magnitude of the adrenergic inhibition is correlated with the magnitude of the RBC pHi regulatory response, expressed as the RBC transmembrane pH difference (pHe-pHi). These results support the ‘CO2 retention theory’ explaining observed increases in blood PCO2 in vivo after exhaustive exercise and catecholamine infusions in fish.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2497-2497
Author(s):  
Kennichi C. Dowdell ◽  
Lesley Pesnicak ◽  
Victoria Hoffman ◽  
Kenneth Steadman ◽  
Mark Ruddel ◽  
...  

Abstract ALPS is an inherited disorder of apoptosis leading to lymphoproliferation and autoimmunity. ALPS Type Ia, Ib and II are associated with germline mutations in Fas, FasL and Casapase 8 or 10, respectively; patients in whom no mutations have been identified are classified as Type III. The vast majority of patients are ALPS Type Ia (greater than 70%). They often present with childhood onset autoimmune cytopenias associated with lymphadenopathy, splenomegaly, increased double negative T cells (DNT; TCRα/β+CD3+CD4−CD8−), defective apoptosis by in vitro assay, and have an increased risk of lymphoma. Similarly, MRL/lpr−/− mice homozygous for Fas mutations develop an ALPS-like disease with massive lymphadenopathy, splenomegaly, hypergammaglobulinemia, autoimmune glomerulonephritis, and expansion of DNT cells secondary to defective lymphocyte apoptosis leading to lymphomagenesis. Currently, there are no proven therapies for the lymphoproliferation underlying ALPS itself, although complications like autoimmune cytopenias and post-splenectomy sepsis are manageable. Hence, studies were conducted to determine the efficacy of valproic acid (VPA) to control the lymphoproliferation associated with ALPS. VPA is a histone deacetylase (HDAC) inhibitor in clinical use for the last four decades as an anticonvulsant in children and adults, and recently being explored as an anti-neoplastic agent. PBMCs from normal controls and ALPS Type Ia patients were cultured in vitro with 0–4 mM VPA in the presence or absence of 50 uM of the pan-caspase inhibitor Z-VAD-FMK. A dose response was observed with a high degree of cell death noted at 4 mM after 48 hours, with an LD50 of 2 mM. VPA appeared to induce cell death by both caspase-dependent and -independent mechanisms based on partial inhibition of VPA-induced cell death by Z-VAD-FMK. Further preclinical studies were conducted in the MRL/lpr−/− murine model of ALPS. Twenty, 8-week old female MRL/lpr−/− mice were treated intraperitoneally (i.p.) with 500 mg/kg of VPA in sterile PBS or PBS alone five days per week for 8 weeks. Significant reduction of the spleen weight (p=0.034) and cellularity (p=0.0001) was observed in VPA treated (n=10) mice compared to controls (n=10). Reductions in size and cellularity were also observed in the lymph nodes (p=0.09 and 0.0002, respectively). A concomitant decrease (p<0.05) in DNT cells was observed in the spleen (11.2±0.6 vs 8.1±0.4) and blood (9.3±0.96 vs 5.5±0.6). Serum drug levels peaked (462±10 ug/mL) by 2 hours post-i.p. injection of VPA, where-as a 2.5 fold increase in histone acetylation was observed in the spleen at 4 hours, following a single injection. Analysis of the effects of VPA on autoimmune renal disease in these animals is underway. Based on our in vitro and in vivo data, VPA is effective at reducing lymphoproliferative activity in Fas deficient MRL/lpr−/− mice. It is being further explored in early phase clinical trials as a lympholytic agent to shrink lymph nodes and abrogate hypersplenism in ALPS patients.


2003 ◽  
Vol 285 (2) ◽  
pp. G298-G308 ◽  
Author(s):  
Chantal Éthier ◽  
Valérie-Ann Raymond ◽  
Lina Musallam ◽  
Robert Houle ◽  
Marc Bilodeau

Growth factors have been shown to protect cells from a variety of apoptotic stimuli. In the liver, the Fas system is thought to be very important in the genesis of hepatocyte apoptosis. Others have already shown the importance of the phosphatidylinositol 3-kinase (PI3-kinase) pathway and of increased Bcl-xl expression in the antiapoptotic effect of growth factors on hepatocytes. We investigated the effect of EGF on Bid, a BH3-only member of the Bcl-2 family and a major player in the transduction of the Fas apoptotic signal. Hepatocyte apoptosis was induced in vitro with a purified anti-mouse Fas antibody. The effect of EGF on Bid protein expression was studied on those cultures. EGF dose dependently reduced the expression of Bid protein in primary mouse hepatocyte cultures independently of Fas stimulation. This decrease was not the result of the degradation of Bid into its active p15 fragment. Treating cells with a specific inhibitor of the EGF receptor autophosphorylation completely abolished the decrease in Bid expression afforded by EGF. Treatment with LY-294002, a PI3-kinase blocker, partly reverted the effect of EGF. When apoptosis was induced in Bid-deficient hepatocytes, EGF lost its capacity to protect cells against this type of cell death. These results show that EGF decreases the expression of Bid protein and suggest that the effect of EGF on Bid is one of the mechanisms of the antiapoptotic effect of EGF.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii100-ii101
Author(s):  
Tobey MacDonald ◽  
Anshu Malhotra ◽  
Jingbo Liu ◽  
Hongying Zhang ◽  
Matthew Schneiderjan ◽  
...  

Abstract Treatment for medulloblastoma (MB) is typically ineffective for MYC amplified or metastatic SHH, Group 3 and 4 subgroups. Promising preclinical and clinical results have been obtained for adult and pediatric malignant glioma treated with ONC-201, a selective antagonist of DRD2, a G-protein coupled receptor that regulates prosurvival pathways. Herein, we report the activity of ONC-201 and ONC-206, which has increased non-competitive antagonism of DRD2, against MB. We treated three different MB cell types representative of SHH- and Group 3-like cells, with varied levels of DRD2 expression, and consistently observed increased cell death in a dose-dependent manner at lower doses of ONC-206 compared to ONC-201. We also evaluated ClpP as an additional drug target in MB. ClpP is a mitochondrial protease that has been shown to directly bind and be activated by ONC 201, and is highly expressed at the protein level across pediatric MB, malignant glioma and ATRT, but not normal brain. We observed that similar to ONC-201, ONC-206 treatment of MB cells induces the restoration of mitochondrial membrane potential to the non-proliferative state, degradation of the mitochondrial substrate SDHB, reduction in survivin and elevation in ATF4 (integrated stress response). Importantly, ONC-206 treatment induced significant cell death of patient-derived SHH, WNT, and Group 3 tumors ex vivo and Group 4 cells in vitro, while having no observable toxicity in normal brain. ONC-206 treatment of a transgenic mouse model of Shh MB in vivo significantly reduces tumor growth and doubles survival time in a dose-dependent manner following 2 weeks of therapy. Additional in vivo data will be reported in preparation for a planned Phase I study of ONC-206 in children with malignant brain tumors.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1086
Author(s):  
Preethi Vetrivel ◽  
Seong Min Kim ◽  
Sang Eun Ha ◽  
Hun Hwan Kim ◽  
Pritam Bhagwan Bhosale ◽  
...  

Gastric cancer is the common type of malignancy positioned at second in mortality rate causing burden worldwide with increasing treatment options. Prunetin (PRU) is an O-methylated flavonoid that belongs to the group of isoflavone executing beneficial activities. In the present study, we investigated the anti-proliferative and cell death effect of the compound PRU in AGS gastric cancer cell line. The in vitro cytotoxic potential of PRU was evaluated and significant proliferation was observed. We identified that the mechanism of cell death was due to necroptosis through double staining and was confirmed by co-treatment with inhibitor necrostatin (Nec-1). We further elucidated the mechanism of action of necroptosis via receptor interacting protein kinase 3 (RIPK3) protein expression and it has been attributed by ROS generation through JNK activation. Furthermore, through computational analysis by molecular docking and dynamics simulation, the efficiency of compound prunetin against RIPK3 binding was validated. In addition, we also briefed the pharmacokinetic properties of the compound by in silico ADMET analysis.


Sign in / Sign up

Export Citation Format

Share Document