scholarly journals The access of metabolites into yeast mitochondria in the presence and absence of the voltage dependent anion selective channel (YVDAC1).

1999 ◽  
Vol 46 (4) ◽  
pp. 991-1000 ◽  
Author(s):  
H Kmita ◽  
O Stobienia ◽  
J Michejda

Since yeast Saccharomyces cerevisiae mutants depleted of the voltage dependent anion selective channel (YVDAC1) are still able to grow on a non-fermentable carbon source, a functional transport system in the outer mitochondrial membrane must exist to support the access of metabolites into mitochondria. It was assumed that the properties of the system could be inferred from the differences in the results observed between wild type and mutant mitochondria since no crucial differences in this respect between the two types of mitoplasts were observed. YVDAC1-depleted mitochondria displayed a highly reduced permeability of the outer membrane, which was reflected in increased values of K0.5(NADH) for respiration and K0.5(ADP) for triggering phosphorylating state as well as in delayed action of carboxyatractylate (CATR) in inhibition of phosphorylating state. The parameters were chosen to express the accessibility of the applied species to the intermembrane space. The passage of the molecules through the outer membrane depleted of YVDAC1 could be partially improved in the presence of bivalent cations (Mg2+, Ca2+), as in their presence lower values of the calculated parameters were obtained. The restrictions imposed on the transport of molecules through the YVDAC1-depleted outer membrane resulted in a competition between them for the access to the intermembrane space as measured by changes in parameters observed for a given species in the presence of another one. The competition was stronger in the absence of Mg2+ and depended on charge and size of transported molecules, as the strongest competitor was CATR and the weakest one--NADH. Thus, it can be concluded that the transport system functioning in the absence of YVDAC1 is modulated by bivalent cations and charge as well as size of transported molecules. Since an increased level of respiration due to the dissipation of delta psi causes an increase of K0.5(NADH) in both wild type and YVDAC1-depleted mitochondria it is concluded that a common property of YVDAC1 and the system functioning in YVDAC1-depleted mitochondria seems to be the dependence of the capacity on the level of mitochondrial respiration.

2003 ◽  
Vol 50 (2) ◽  
pp. 415-424 ◽  
Author(s):  
Hanna Kmita ◽  
Małgorzata Budzińska ◽  
Olgierd Stobienia

It is well known that effective exchange of metabolites between mitochondria and the cytoplasm is essential for cell physiology. The key step of the exchange is transport across the mitochondrial outer membrane, which is supported by the voltage-dependent anion-selective channel (VDAC). Therefore, it is clear that the permeability of VDAC must be regulated to adjust its activity to the actual cell needs. VDAC-modulating activities, often referred to as the VDAC modulator, were identified in the intermembrane space of different organism mitochondria but the responsible protein(s) has not been identified as yet. Because the VDAC modulator was reported to act on VDAC of intact mitochondria when added to the cytoplasmic side it has been speculated that a similar modulating activity might be present in the cytoplasm. To check the speculation we used mitochondria of the yeast Saccharomyces cerevisiae as they constitute a perfect model to study VDAC modulation. The mitochondria contain only a single isoform of VDAC and it is possible to obtain viable mutants devoid of the channel (Deltapor1). Moreover, we have recently characterised a VDAC-modulating activity located in the intermembrane space of wild type and Deltapor1 S. cerevisiae mitochondria. Here, we report that the cytoplasm of wild type and Deltapor1 cells of S. cerevisiae contains a VDAC-modulating activity as measured in a reconstituted system and with intact mitochondria. Since quantitative differences were observed between the modulating fractions isolated from wild type and Deltapor1 cells when they were studied with intact wild type mitochondria as well as by protein electrophoresis it might be concluded that VDAC may influence the properties of the involved cytoplasmic proteins. Moreover, the VDAC-modulating activity in the cytoplasm differs distinctly from that reported for the mitochondrial intermembrane space. Nevertheless, both these activities may contribute efficiently to VDAC regulation. Thus, the identification of the proteins is very important.


2001 ◽  
Vol 48 (3) ◽  
pp. 719-728 ◽  
Author(s):  
A Szczechowicz ◽  
L Hryniewiecka ◽  
H Kmita

The supply of substrates to the respiratory chain as well as of other metabolites (e.g. ATP) into inner compartments of mitochondria is crucial to preprotein import into these organelles. Transport of the compounds across the outer mitochondrial membrane is enabled by mitochondrial porin, also known as the voltage-dependent anion-selective channel (VDAC). Our previous studies led to the conclusion that the transport of metabolites through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria missing VDAC (now termed YVDAC1) is considerably restricted. Therefore we expected that depletion of YVDAC1 should also hamper protein import into the mutant mitochondria. We report here that YVDAC1-depleted mitochondria are able to import a fusion protein termed pSu9-DHFR in the amount comparable to that of wild type mitochondria, although over a considerably longer time. The rate of import of the fusion protein into YVDAC1-depleted mitochondria is dis- tinctly lower than into wild type mitochondria probably due to restricted ATP access to the intermembrane space and is additionally influenced by the way the supporting respiratory substrates are transported through the outer membrane. In the presence of ethanol, diffusing freely through lipid membranes, YVDAC1-depleted mitochondria are able to import the fusion protein at a higher rate than in the presence of external NADH which is, like ATP, transported through the outer membrane by facilitated diffusion. It has been shown that transport of external NADH across the outer membrane of YVDAC1-depleted mitochondria is supported by the protein import machinery, i.e. the TOM complex (Kmita & Budzińska, 2000, Biochim. Biophys. Acta 1509, 86-94.). Since the TOM complex might also contribute to the permeability of the membrane to ATP, it seems possible that external NADH and ATP as well as the imported preprotein could compete with one another for the passage through the outer membrane in YVDAC1-depleted mitochondria.


2001 ◽  
Vol 152 (6) ◽  
pp. 1123-1134 ◽  
Author(s):  
Hiromi Sesaki ◽  
Robert E. Jensen

Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH2 terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.


2002 ◽  
Vol 80 (5) ◽  
pp. 551-562 ◽  
Author(s):  
Denice C Bay ◽  
Deborah A Court

Voltage-dependent anion-selective channels (VDAC), also known as mitochondrial porins, are key regulators of metabolite flow across the mitochondrial outer membrane. Porins from a wide variety of organisms share remarkably similar electrophysiological properties, in spite of considerable sequence dissimilarity, indicating that they share a common structure. Based on primary sequence considerations, analogy with bacterial porins, and circular dichroism analysis, it is agreed that VDAC spans the outer membrane as a β-barrel. However, the residues that form the antiparallel β-strands comprising this barrel remain unknown. Various predictive methods, largely based on the known structures of bacterial β-barrels, have been applied to the primary sequences of VDAC. Refinement and confirmation of these predictions have developed through numerous investigations of wild-type and variant porins, both in mitochondria and in artificial membranes. These experiments have involved VDAC from several sources, precluding the generation of a unified model. Herein, using the Neurospora VDAC sequence as a template, the published structural information and predictions have been reassessed to delineate a model that satisfies most of the available data.Key words: VDAC, mitochondrial porin, β-barrel.


2007 ◽  
Vol 292 (4) ◽  
pp. C1388-C1397 ◽  
Author(s):  
Wenzhi Tan ◽  
Johnathan C. Lai ◽  
Paul Miller ◽  
C. A. Stein ◽  
Marco Colombini

G3139, an antisense Bcl-2 phosphorothioate oligodeoxyribonucleotide, induces apoptosis in melanoma and other cancer cells. This apoptosis happens before and in the absence of the downregulation of Bcl-2 and thus seems to be Bcl-2-independent. Binding of G3139 to mitochondria and its ability to close voltage-dependent anion-selective channel (VDAC) have led to the hypothesis that G3139 acts, in part, by interacting with VDAC channels in the mitochondrial outer membrane ( 21 ). In this study, we demonstrate that G3139 is able to reduce the mitochondrial outer membrane permeability to ADP by a factor of 6 or 7 with a Ki between 0.2 and 0.5 μM. Because VDAC is responsible for this permeability, this result strengthens the aforesaid hypothesis. Other mitochondrial respiration components are not affected by [G3139] up to 1 μM. Higher levels begin to inhibit respiration rates, decrease light scattering and increase uncoupled respiration. These results agree with accumulating evidence that VDAC closure favors cytochrome c release. The speed of this effect (within 10 min) places it early in the apoptotic cascade with cytochrome c release occurring at later times. Other phosphorothioate oligonucleotides are also able to induce VDAC closure, and there is some length dependence. The phosphorothioate linkages are required to induce the reduction of outer membrane permeability. At levels below 1 μM, phosphorothioate oligonucleotides are the first specific tools to restrict mitochondrial outer membrane permeability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fraser G. Ferens ◽  
William A. T. Summers ◽  
Ameet Bharaj ◽  
Jörg Stetefeld ◽  
Deborah A. Court

The voltage-dependent anion-selective channel (VDAC) is a porin in the mitochondrial outer membrane (MOM). Unlike bacterial porins, several mitochondrial β-barrels comprise an odd number of β-strands, as is the case for the 19-β-stranded VDAC. Previously, a variant of a VDAC from Neurospora crassa, VDAC-ΔC, lacking the predicted 19th β-strand, was found to form gated, anion-selective channels in artificial membranes. In vivo, the two C-terminal β-strands (β18 and β19) in VDAC form a β-hairpin necessary for import from the cytoplasm into mitochondria and the β-signal required for assembly in the mitochondrial outer membrane resides in β19. The current study demonstrated that the putative 18-stranded β-barrel formed by VDAC-ΔC can be imported and assembled in the MOM in vivo and can also partially rescue the phenotype associated with the deletion of VDAC from a strain of N. crassa. Furthermore, when expressed and purified from Escherichia coli, VDAC-ΔC can be folded into a β-strand-rich form in decyl-maltoside. Size exclusion chromatography (SEC) alone or combined with multi-angle light scattering (SEC-MALS) and analytical ultracentrifugation revealed that, unlike full-length VDACs, VDAC-ΔC can self-organize into dimers and higher order oligomers in the absence of sterol.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anasuya Moitra ◽  
Doron Rapaport

Voltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes. The protein is then targeted to the mitochondria while being maintained in an import competent conformation by specific cytosolic factors. Recent studies, using yeast cells as a model system, have unearthed the long searched for mitochondrial targeting signal for VDAC and the role of cytosolic chaperones and mitochondrial import machineries in its proper biogenesis. In this review, we summarize our current knowledge regarding the early cytosolic stages of the biogenesis of VDAC molecules, the specific targeting of VDAC to the mitochondrial surface, and the subsequent integration of VDAC into the mitochondrial outer membrane by the TOM and TOB/SAM complexes.


2006 ◽  
Vol 17 (3) ◽  
pp. 1436-1450 ◽  
Author(s):  
Rene P. Zahedi ◽  
Albert Sickmann ◽  
Andreas M. Boehm ◽  
Christiane Winkler ◽  
Nicole Zufall ◽  
...  

Mitochondria consist of four compartments–outer membrane, intermembrane space, inner membrane, and matrix—with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of ∼85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjögren–Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.


2014 ◽  
Vol 306 (1) ◽  
pp. G1-G12 ◽  
Author(s):  
Phuntila Tharabenjasin ◽  
Veronique Douard ◽  
Chirag Patel ◽  
Nateetip Krishnamra ◽  
Richard J. Johnson ◽  
...  

Fructose consumption by Americans has increased markedly, whereas Ca2+ intake has decreased below recommended levels. Because fructose metabolism decreases enterocyte ATP concentrations, we tested the hypothesis that luminal fructose acutely reduces active, diet-inducible Ca2+ transport in the small intestine. We confirmed that the decrease in ATP concentrations was indeed greater in fructose- compared with glucose-incubated mucosal homogenates from wild-type and was prevented in fructose-incubated homogenates from ketohexokinase (KHK)−/− mice. We then induced active Ca2+ transport by chronically feeding wild-type, fructose transporter glucose transporter 5 (GLUT5)−/−, as well as KHK−/− mice a low Ca2+ diet and measured transepithelial Ca2+ transport in everted duodenal sacs incubated in solutions containing glucose, fructose, or their nonmetabolizable analogs. The diet-induced increase in active Ca2+ transport was proportional to dramatic increases in expression of the Ca2+-selective channel transient receptor potential vanilloid family calcium channel 6 as well as of the Ca2+-binding protein 9k (CaBP9k) but not that of the voltage-dependent L-type channel Ca(v)1.3. Crypt-villus distribution of CaBP9k seems heterogeneous, but low Ca2+ diets induce expression in more cells. In contrast, KHK distribution is homogeneous, suggesting that fructose metabolism can occur in all enterocytes. Diet-induced Ca2+ transport was not enhanced by addition of the enterocyte fuel glutamine and was always greater in sacs of wild-type, GLUT5−/−, and KHK−/− mice incubated with fructose or nonmetabolizable sugars than those incubated with glucose. Thus duodenal Ca2+ transport is not affected by fructose and enterocyte ATP concentrations but instead may decrease with glucose metabolism, as Ca2+ transport remains high with 3- O-methylglucose that is also transported by sodium-glucose cotransporter 1 but cannot be metabolized.


Sign in / Sign up

Export Citation Format

Share Document