scholarly journals Determination of lysosomal exoglycosidases in human saliva.

2014 ◽  
Vol 61 (1) ◽  
Author(s):  
Sylwia Chojnowska ◽  
Anna Zalewska ◽  
Małgorzata Knaś ◽  
Napoleon Waszkiewicz ◽  
Danuta Waszkiel ◽  
...  

Currently we observe a growing interest in human saliva as a non-invasive material for diagnosis and monitoring of general and oral diseases. The aim of our study was adaptation of the Marciniak et al. (Marciniak J, Zalewska A, Popko J, Zwierz K, 2006, Clin Chem Lab Med 44: 933-937) method for determination of HEX and GLU activity in synovial fluid, and for determination of: HEX and GLU, as well as MAN, GAL, and FUC activity in human saliva. Under optimal conditions, 10 μl of saliva for HEX, and 30 μl for GLU, MAN, GAL and FUC, were sufficient for determination of human salivary exoglycosidases activity with variation coefficient ranging from 0.89 for GLU to 0.99 for GAL. The adapted method for exoglycosidases activity determination in human saliva is sufficiently sensitive and precise to use in clinical diagnosis.

Author(s):  
Andrea Vernerová ◽  
Lenka Kujovská Krčmová ◽  
Bohuslav Melichar ◽  
František Švec

AbstractThis review summarizes and critically evaluates the published approaches and recent trends in sample pre-treatment, as well as both separation and non-separation techniques used for the determination of uric acid (UA) in saliva. UA is the final product of purine nucleotide catabolism in humans. UA concentrations in biological fluids such as serum, plasma, and urine represent an important biomarker of diseases including gout, hyperuricemia, or disorders associated with oxidative stress. Previous studies reported correlation between UA concentrations detected in saliva and in the blood. The interest in UA has been increasing during the past 20 years from a single publication in 2000 to 34 papers in 2019 according to MEDLINE search using term “uric acid in saliva”. The evaluation of salivary UA levels can contribute to non-invasive diagnosis of many serious diseases. Increased salivary UA concentration is associated with cancer, HIV, gout, and hypertension. In contrast, low UA levels are associated with Alzheimer disease, progression of multiple sclerosis, and mild cognitive impairment.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 898
Author(s):  
Marcin Urbanowicz ◽  
Kamila Sadowska ◽  
Agnieszka Paziewska-Nowak ◽  
Anna Sołdatowska ◽  
Dorota G. Pijanowska

There is growing interest for bioanalytical tools that might be designed for a specific user, primarily for research purposes. In this perspective, a new, highly stable potentiometric sensor based on glassy carbon/polyazulene/NH4+-selective membrane was developed and utilized for urease activity determination. Urease–urea interaction studies were carried out and the Michaelis–Menten constant was established for this enzymatic reaction. Biofunctionalization of the ammonium ion-selective sensor with urease lead to urea biosensor with remarkably good potential stability (drift coefficient ~0.9 mV/h) and short response time (t95% = 36 s). The prepared biosensor showed the Nernstian response (S = 52.4 ± 0.7 mV/dec) in the urea concentration range from 0.01 to 20 mM, stable for the experimental time of 60 days. In addition, some insights into electrical properties of the ion-to-electron transducing layer resulting from impedance spectroscopy measurements are presented. Based on the RCQ equivalent circuits comparison, it can be drawn that the polyazulene (PAz) layer shows the least capacitive behavior, which might result in good time stability of the sensor in respect to response as well as potential E0. Both the polyazulene-based solid-contact ion selective electrodes and urea biosensors were successfully used in trial studies for determination of ammonium ion and urea in human saliva samples. The accuracy of ammonium ion and urea levels determination by potentiometric method was confirmed by two reference spectrophotometric methods.


2019 ◽  
Vol 2 (1) ◽  
pp. 67-74
Author(s):  
Oleen Machona ◽  
Ronald Mlambo ◽  
Tafadzwa Zharare ◽  
Rumbidzai Mangoyi

Author(s):  
Magsumova O.A. ◽  
Postnikov M.A. ◽  
Ryskina E.A. ◽  
Tkach T.M. ◽  
Polkanova V.A.

One of the non-invasive methods for treating discoloration of hard tooth tissues is teeth whitening. The aim of this work is to assess the dynamics of changes in the acid resistance of enamel and hard tissues of teeth and the rate of its remineralization after the procedure of office teeth whitening. The study involved 123 patients aged 18 to 35 years with discoloration of various origins, with the color of hard tooth tissues on the Vita Classic A2 scale and darker. Before performing the office, teeth whitening procedure, all patients gave their written voluntary informed consent to participate in this study, as well as consent to the processing of personal data. Depending on the chosen method of office teeth whitening, patients were divided into 3 groups. The resistance of hard tooth tissues was judged based on the determination of TOER and CASRE tests. These indicators were determined at various times (5 days before the office teeth whitening procedure, 5 days after it, after 14, 30 days and 6 months). Regardless of the chosen whitening system, the office teeth whitening procedure is accompanied by a decrease in the enamel's resistance to acids and a decrease in the rate of its remineralization. The remineralizing function of oral fluid promotes the positive dynamics of the studied parameters after 14 days and after 30 days values increased due to the appointment of remineralizing therapy to all patients in 2 weeks after the teeth whitening procedure. After 6 months, all patients had high enamel resistance and the rate of its remineralization.


2020 ◽  
Vol 16 (6) ◽  
pp. 722-737
Author(s):  
Cigdem Yengin ◽  
Emrah Kilinc ◽  
Fatma Gulay Der ◽  
Mehmet Can Sezgin ◽  
Ilayda Alcin

Background: Reverse İontophoresis (RI) is one of the promising non-invasive technologies. It relies on the transition of low magnitude current through the skin and thus glucose measurement becomes possible as it is extracted from the surface during this porter current flow. Objective: This paper deals with the development and optimization of an RI determination method for glucose. CE dialysis membrane based artificial skin model was developed and the dependence of RI extraction on various experimental parameters was investigated. Method: Dependence of RI extraction performance on noble electrodes (platinum, silver, palladium, ruthenium, rhodium) was checked with CA, CV and DPV, in a wide pH and ionic strength range. Optimizations on inter-electrode distance, potential type and magnitude, extraction time, gel type, membrane MWCO, usage frequency, pretreatment, artificial body fluids were performed. Results: According to the optimized results, the inter-electrode distance was 7.0 mm and silver was the optimum noble metal. Optimum pH and ionic strength were achieved with 0.05M PBS at pH 7.4. Higher glucose yields were obtained with DPV, while CA and CV achieved almost the same levels. During CA, +0.5V achieved the highest glucose yield and higher potential even caused a decrease. Glucose levels could be monitored for 24 hours. CMC gel was the optimum collection media. Pretreated CE membrane with 12kD MWCO was the artificial skin model. Pretreatment affected the yields while its condition caused no significant difference. Except PBS solution (simulated as artificial plasma), among the various artificial simulated body fluids, intestinal juice formulation (AI) and urine formulation U2 were the optimum extraction media, respectively. Conclusion: In this study, various experimental parameters (pretereatment procedure, type and MWCO values of membranes, inter-electrode distance, electrode material, extraction medium solvents, ionic strength and pH, collection medium gel type, extraction potential type and magnitude, extraction time and etc) were optimized for the non-invasive RI determination of glucose in a CE dialysis membrane-based artificial skin model and various simulated artificial body fluids.


1983 ◽  
Vol 48 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Vlastimil Kubáň ◽  
Miroslav Macka

The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the reactions of formation of the ML and ML2 complexes of both reagents with cadmium(II) ions were determined by graphical analysis and numerical interpretation of the absorbance-pH curves by the modified SQUAD-G program. Optimal conditions were proposed for the spectrophotometric determination of Cd in 10% v/v ethanol medium in the presence of 0.1% w/v Triton X-100 or 1% w/v Brij 35. BrPADAP and ClPADAP are the most sensitive spectrophotometric reagents for the determination of cadmium(II) ions (ε = 1.28-1.44 . 105 mmol-1 cm2 at 560 nm and pH 8.0-9.5) with a high colour contrast in the reaction (Δλmax ~117 nm) and a selectivity similar to that of other N-heterocyclic azodyes (PAR, PAN, etc.).


1982 ◽  
Vol 47 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Irena Němcová ◽  
Pavla Plocková ◽  
Tran Hong Con

The absorption spectra of the binary complexes of lanthanoids with bromopyrogallol red were measured and the formation of ternary complexes with cation active tenside, Septonex, was studied. Optimal conditions were found for the formation of these complexes and the possibility of their use in the photometric determination of lanthanoids was demonstrated on several examples.


Sign in / Sign up

Export Citation Format

Share Document