scholarly journals Curcumin augments cytostatic and anti-invasive effects of mitoxantrone on carcinosar-coma cells in vitro

2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Marcin Luty ◽  
Edyta Kwiecień ◽  
Magdalena Firlej ◽  
Anna Łabędź-Masłowska ◽  
Milena Paw ◽  
...  

Numerous adverse effects limit the applicability of mitoxantrone for the treatment of drug-resistant tumors, including carcinosarcoma. Here, we estimated the additive effects of mitoxantrone and curcumin, a plant-derived biomolecule isolated from Curcuma longa, on the neoplastic and invasive potential of carcinosarcoma cells in vitro. Curcumin augmented cytostatic, cytotoxic and anti-invasive effects of mitoxantrone on Walker-256 cells. It also strengthened inhibitory effects of mitoxantrone on the motility of drug-resistant Walker-256 cells that had retained the viability after long-term mitoxantrone/curcumin treatment. Thus, curcumin reduces the effective doses of mitoxantrone and augments its interference with the invasive potential of drug-resistant carcinosarcoma cells.

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1059
Author(s):  
Marianna Pauletto ◽  
Mery Giantin ◽  
Roberta Tolosi ◽  
Irene Bassan ◽  
Andrea Barbarossa ◽  
...  

Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.


1995 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
L. K. Madren ◽  
C. Shipman ◽  
F. G. Hayden

To assess the possible interactions among candidate anti-influenza agents, dual combinations of rimantadine, ribavirin, 2′-deoxy-2′-fluoroguanosine (2-FDG) and 4-guanidino-Neu5Ac2en (GG167) were tested against clinical isolates of influenza A H3N2 and H1N1 subtype viruses in MDCK cells by ELISA. Each of the dual combinations showed additive effects, except for the combination of 2-FDG and ribavirin which was synergistic against the influenza A (H1N1) virus. However, this combination also showed enhanced cytotoxicity. In this assay system, influenza agents with differing mechanisms of antiviral interaction interacted in an additive fashion with respect to inhibition of viral replication.


2019 ◽  
Author(s):  
Lauren E. Barney ◽  
Christopher L. Hall ◽  
Alyssa D. Schwartz ◽  
Akia N. Parks ◽  
Christopher Sparages ◽  
...  

AbstractTumors can undergo long periods of dormancy, with cancer cells entering a largely quiescent, non-proliferative state before reactivation and outgrowth. For a patient, these post-remission tumors are often drug resistant and highly aggressive, resulting in poor prognosis. To understand the role of the extracellular matrix (ECM) in regulating tumor dormancy, we created anin vitrocell culture system that combines carefully controlled ECM substrates with nutrient deprivation to observe entranceintoand exitfromdormancy with live imaging. We saw that cell populations capable of surviving entrance into long-term dormancy were heterogeneous, containing quiescent, cell cycle arrested, and actively proliferating cells. Cell populations that endured extended periods of serum-deprivation-induced dormancy formed an organized, fibrillar fibronectin matrix via αvβ3and α5β1integrin adhesion, ROCK-generated tension, and TGFβ2 stimulation. We surmised that the fibronectin matrix was primarily a mediator of cell survival, not proliferation, during the serum-deprivation stress, bacause cancer cell outgrowth after dormancy required MMP-2-mediated fibronectin degradation. Given the difficulty of animal models in observing entrance and exit from dormancy in real-time, we propose this approach as a new,in vitromethod to study factors important in regulating dormancy, and we used it here to elucidate a role for fibronectin deposition and MMP activation.


2016 ◽  
Vol 38 (2) ◽  
pp. 84-88 ◽  
Author(s):  
T M Yalovenko ◽  
I M Todor ◽  
N Yu Lukianova ◽  
V F Chekhun

Aim: To investigate the role of hepcidin (Hepc) in the formation of cells malignant phenotype in vitro and its expression in the dyna mics of growth of Walker-256 carcinosarcoma with different sensitivity to doxorubicin (Dox). Materials and Methods: The cell lines used in the analysis included T47D, MCF-7, MDA-MB-231, MDA-MB-468, MCF/CP, and MCF/Dox. Hepc expression was studied by immunocytochemical method. “Free” iron content was determined by EPR spectroscopy. Determination of Hepc expression in homogenates of tumor tissue and in blood serum of rats with Dox-sensitive and -resistant Walker-256 carcinosarcoma was performed. Results: It was found that Hepc levels in breast cancer (BC) cells with high degree of malignancy (MDA-MB-231, MDAMB-468) and drug-resistant phenotype (MCF/CP, MCF/Dox) were by 1.5–2 times higher (p < 0.05) in comparison with sensitive and less malignant BC cells. The development of drug-resistant phenotype in Walker-256 carcinosarcoma cells was accompanied by increasing of Hepc and “free” iron content (by 2.4 and 1.2 times, respectively). Conclusion: The data of in vitro and in vivo research evidenced on involvement of Hepc in formation of BC cells malignant phenotype and their resistance to Dox.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qin Peng ◽  
Fei Lin ◽  
Baodong Ling

Abstract Acinetobacter baumannii is a common pathogen of nosocomial infection, and its ability to form biofilms further contributes to its virulence and multidrug resistance, posing a great threat to global public health. In this study, we investigated the inhibitory effects of five biofilm inhibitors (BFIs) (zinc lactate, stannous fluoride, furanone, azithromycin, and rifampicin) on biofilm formation of nine extensively drug-resistant A. baumannii (XDRAB), and assessed the synergistic antibacterial effects of these BFIs when combined with one of four conventional anti-A. baumannii antibiotics (imipenem, meropenem, tigecycline, and polymyxin B). Each of the five BFIs tested was found to be able to significantly inhibit biofilm formation of all the clinical isolates tested under sub-minimal inhibitory concentrations. Then, we observed synergistic effects (in 22%, 56% and 11% of the isolates) and additive effects (56%, 44% and 44%) when zinc lactate, stannous fluoride and furanone were combined with tigecycline, respectively. When zinc lactate and stannous fluoride were each used with a carbapenem (imipenem or meropenem), in 33% and 56–67% of the isolates, they showed synergistic and additive effects, respectively. Additivity in > 50% of the isolates was detected when rifampicin was combined with imipenem, meropenem, tigecycline, or polymyxin B; and a 100% additivity was noted with azithromycin-polymyxin B combination. However, antagonism and indifference were noted for polymyxin B in its combination with zinc lactate and stannous fluoride, respectively. In conclusion, five BFIs in combination with four antibacterial drugs showed different degrees of in vitro synergistic and additive antibacterial effects against XDRAB.


Author(s):  
Henning Sommermeyer ◽  
Hanna M. Pituch ◽  
Dorota Wultanska ◽  
Paulina Wojtyla-Buciora ◽  
Jacek Piatek ◽  
...  

Diarrhea is a common problem in nursing homes. A survey among nursing facilities in Poland was used to characterize diarrhea outbreaks, the burden caused for residents and caregivers and the employed measures. Survey results confirmed that diarrhea is a common problem in nursing homes and in most cases affects groups of residents. The related burden is high or very high for 27% of residents and 40% of caregivers. In 80% of nursing facilities pro or synbiotics are part of the measures used to manage diarrhea. Administration of these kinds of products has been suggested for the management of diarrhea, especially in cases caused by Clostridioides (C.) difficile. C. difficile is one of many potential causes for diarrhea, but is of particular concern for nursing homes because it is responsible for a large proportion of diarrhea outbreaks and is often caused by multi-drug resistant strains. In vitro inhibition of a quinolone-resistant and a multi-drug resistant C. difficile strain was used to evaluate the growth inhibitory effects of commonly used products containing probiotic microorganisms. Growth of both strains was best inhibited by multi-strain synbiotic preparations. These findings suggest that multi-strain synbiotics can be considered as an interventional option for diarrhea caused by C. difficile.


Sign in / Sign up

Export Citation Format

Share Document