scholarly journals The role of serum hyaluronic acid determination in the diagnosis of liver fibrosis

2017 ◽  
Vol 64 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Monika Gudowska ◽  
Bogdan Cylwik ◽  
Lech Chrostek
2010 ◽  
Vol 45 (3) ◽  
pp. 215-218 ◽  
Author(s):  
Maria Papastamataki ◽  
Polyxeni Delaporta ◽  
Evangelos Premetis ◽  
Antonios Kattamis ◽  
Vassilios Ladis ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


2020 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
Na Young Lee ◽  
Ki Tae Suk

Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1606 ◽  
Author(s):  
Weifeng Lin ◽  
Zhang Liu ◽  
Nir Kampf ◽  
Jacob Klein

Hydration lubrication has emerged as a new paradigm for lubrication in aqueous and biological media, accounting especially for the extremely low friction (friction coefficients down to 0.001) of articular cartilage lubrication in joints. Among the ensemble of molecules acting in the joint, phosphatidylcholine (PC) lipids have been proposed as the key molecules forming, in a complex with other molecules including hyaluronic acid (HA), a robust layer on the outer surface of the cartilage. HA, ubiquitous in synovial joints, is not in itself a good boundary lubricant, but binds the PC lipids at the cartilage surface; these, in turn, massively reduce the friction via hydration lubrication at their exposed, highly hydrated phosphocholine headgroups. An important unresolved issue in this scenario is why the free HA molecules in the synovial fluid do not suppress the lubricity by adsorbing simultaneously to the opposing lipid layers, i.e., forming an adhesive, dissipative bridge between them, as they slide past each other during joint articulation. To address this question, we directly examined the friction between two hydrogenated soy PC (HSPC) lipid layers (in the form of liposomes) immersed in HA solution or two palmitoyl–oleoyl PC (POPC) lipid layers across HA–POPC solution using a surface force balance (SFB). The results show, clearly and surprisingly, that HA addition does not affect the outstanding lubrication provided by the PC lipid layers. A possible mechanism indicated by our data that may account for this is that multiple lipid layers form on each cartilage surface, so that the slip plane may move from the midplane between the opposing surfaces, which is bridged by the HA, to an HA-free interface within a multilayer, where hydration lubrication is freely active. Another possibility suggested by our model experiments is that lipids in synovial fluid may complex with HA, thereby inhibiting the HA molecules from adhering to the lipids on the cartilage surfaces.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonghwa Kim ◽  
Wonseok Kang ◽  
So Hee Kang ◽  
Su Hyun Park ◽  
Ji Young Kim ◽  
...  

AbstractHepatic fibrogenesis is characterized by activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix (ECM). The impact of ECM on TGF-β-mediated fibrogenic signaling pathway in HSCs has remained obscure. We studied the role of non-receptor tyrosine kinase focal adhesion kinase (FAK) family members in TGF-β-signaling in HSCs. We used a CCl4-induced liver fibrosis mice model to evaluate the effect of FAK family kinase inhibitors on liver fibrosis. RT-PCR and Western blot were used to measure the expression of its target genes; α-SMA, collagen, Nox4, TGF-β1, Smad7, and CTGF. Pharmacological inhibitors, siRNA-mediated knock-down, and plasmid-based overexpression were adopted to modulate the function and the expression level of proteins. Association of PYK2 activation with liver fibrosis was confirmed in liver samples from CCl4-treated mice and patients with significant fibrosis or cirrhosis. TGF-β treatment up-regulated expression of α-SMA, type I collagen, NOX4, CTGF, TGF-β1, and Smad7 in LX-2 cells. Inhibition of FAK family members suppressed TGF-β-mediated fibrogenic signaling. SiRNA experiments demonstrated that TGF-β1 and Smad7 were upregulated via Smad-dependent pathway through FAK activation. In addition, CTGF induction was Smad-independent and PYK2-dependent. Furthermore, RhoA activation was essential for TGF-β-mediated CTGF induction, evidenced by using ROCK inhibitor and dominant negative RhoA expression. We identified that TGF-β1-induced activation of PYK2-Src-RhoA triad leads to YAP/TAZ activation for CTGF induction in liver fibrosis. These findings provide new insights into the role of focal adhesion molecules in liver fibrogenesis, and targeting PYK2 may be an attractive target for developing novel therapeutic strategies for the treatment of liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document