scholarly journals Three-dimensional temperature and velocity measurements in fluids using thermographic phosphor tracer particles

Author(s):  
Moritz Stelter ◽  
Fabio J. W. A. Martins ◽  
Frank Beyrau ◽  
Benoît Fond

Many flows of technical and scientific interest are intrinsically three-dimensional. Extracting slices using planar measurement techniques allows only a limited view into the flow physics and can introduce ambiguities while investigating the extent of 3D regions. Nowadays, thanks to tremendous progress in the field of volumetric velocimetry, full 3D-3C velocity information can be gathered using tomographic PIV or PTV hence eliminating many of these ambiguities (Discetti and Coletti, 2018; Westerweel et al., 2013). However, for scalar quantities like temperature, 3D measurements remain challenging. Previous approaches for coupled 3D thermometry and velocimetry combined astigmatism PTV with encapsulated europium chelates particles (Massing et al., 2018) or tomographic PIV with thermochromic liquid crystals particles (Schiepel et al., 2021). Here we present a new technique based on solid thermographic phosphor tracer particles, which have been extensively used for planar fluid temperature and velocity measurements (Abram et al., 2018) and are applicable in a wide range of temperatures. The particles are seeded into a gas flow where their 3D positions are retrieved by triangulation from multiple views and their temperatures are derived from two-colour luminescence ratio imaging. In the following, the experimental setup and key processing steps are described before a demonstration of the concept in a turbulent heated jet is shown.

2020 ◽  
Vol 633 ◽  
pp. A81 ◽  
Author(s):  
Ayumu Kuwahara ◽  
Hiroyuki Kurokawa

Context. The pebble accretion model has the potential to explain the formation of various types of planets. The main difference between this and the planetesimal accretion model is that pebbles not only experience the gravitational interaction with the growing planet but also a gas drag force from the surrounding protoplanetary disk gas. Aims. A growing planet embedded in a disk induces three-dimensional (3D) gas flow, which may influence pebble accretion. However, so far the conventional pebble accretion model has only been discussed in the unperturbed (sub-)Keplerian shear flow. In this study, we investigate the influence of 3D planet-induced gas flow on pebble accretion. Methods. Assuming a nonisothermal, inviscid gas disk, we perform 3D hydrodynamical simulations on the spherical polar grid, which has a planet located at its center. We then numerically integrate the equation of motion of pebbles in 3D using hydrodynamical simulation data. Results. We find that the trajectories of pebbles in the planet-induced gas flow differ significantly from those in the unperturbed shear flow for a wide range of investigated pebble sizes (St = 10−3–100, where St is the Stokes number). The horseshoe flow and outflow of the gas alter the motion of the pebbles, which leads to a reduction of the width of the accretion window, wacc, and the accretion cross section, Aacc. On the other hand, the changes in trajectories also cause an increase in the relative velocity of pebbles to the planet, which offsets the reduction of wacc and Aacc. As a consequence, in the Stokes regime, the accretion probability of pebbles, Pacc, in the planet-induced gas flow is comparable to that in the unperturbed shear flow except when the Stokes number is small, St ~ 10−3, in 2D accretion, or when the thermal mass of the planet is small, m = 0.03, in 3D accretion. In contrast, in the Epstein regime, Pacc in the planet-induced gas flow becomes smaller than that in the shear flow in the Stokes regime in both 2D and 3D accretion, regardless of assumed St and m. Conclusions. Our results combined with the spacial variety of turbulence strength and pebble size in a disk, suggest that the 3D planet-induced gas flow may be helpful to explain the distribution of exoplanets and the architecture of the Solar System.


2019 ◽  
Vol 137 ◽  
pp. 01011
Author(s):  
Sebastian Rulik ◽  
Włodzimierz Wrόblewski ◽  
Mirosław Majkut ◽  
Michał Strozik ◽  
Krzysztof Rusin

Cavities and gaps are an important element in the construction of many devices and machines, including energy sector applications. This type of flow is usually coupled with strong pressure fluctuations inside the cavity, which are emitted into the far field in the form of a sound wave responsible for the noise generation. This applies to both subsonic and supersonic flows. Pressure fluctuations often have the character of single tones of a specific frequency and high amplitude and their generation is associated with a vortex shedding formed directly above the inlet and its interaction with the walls of the cavity. The presented work include description of developed test stand and applied measurement techniques dedicated to the analysis of high frequency phenomena. In addition, the adopted numerical model will be described, including conducted two-dimensional and three-dimensional analysis. The developed models will be validated based on experimental measurements concerning wide range of flow conditions.


Author(s):  
Adrian Spencer ◽  
Mark Brend ◽  
Daniel Butcher ◽  
David Dunham ◽  
Liangta Cheng ◽  
...  

The isothermal flow fields of injectors have undergone several computational and experimental investigations using point and planar measurement techniques,. Within the swirl induced vortex breakdown region it is only LES that has been able to predict fully the presence of a three dimensional helical vortex structure for a particular injector, and in certain conditions (no central fuel jet), a precessing vortex core. These structures can be elucidated from point and planar measurements and favorable comparisons of velocity statistics between experiment and LES predictions strengthen these findings. However, volumetric, 3-component measurement of velocity data has not been widely available to provide conclusive evidence of the exact three dimensional nature of the vortex structures that exist. An experimental setup utilizing time resolved tomographic PIV on a water flow rig is described in this paper. This is used to provide as high-quality aerodynamic study as possible of a single stream radially-fed air swirl gaseous fuel injector. The level of accuracy of the tomographic PIV technique is demonstrated by calculating the divergence of the velocity field as well as validating the results against a comprehensive 2 and 3 component standard PIV velocity database and other measurement techniques and predictions. Structure identification methods have been employed to visualise and understand the complex flow topology within the near field of the injector. The change in topology with and without the stabilising central jet is further investigated and agrees with findings of planar PIV results. While the velocity error associated with the tomo-PIV results is higher than the planar results the data agree well within the identified uncertainty bounds and are complimentary in understanding the flow field structure. Thus a full volumetric aerodynamic survey is available for the first time on this isothermal flow case.


Volume 1 ◽  
2004 ◽  
Author(s):  
K. A. Williams ◽  
D. M. Snider ◽  
J. R. Torczynski ◽  
S. M. Trujillo ◽  
T. J. O’Hern

The commercial computational fluid dynamics (CFD) code Arena-flow is used to simulate the transient, three-dimensional flow in a gas-solid riser at Sandia National Laboratories. Arena-flow uses a multiphase particle-in-cell (MP-PIC) numerical method. The gas flow is treated in an Eulerian manner, and the particle flow is represented in a Lagrangian manner by large numbers of discrete particle clouds with distributions of particle properties. Simulations are performed using the experimental values of the gas superficial velocity and the solids mass flux in the riser. Fluid catalytic cracking (FCC) particles are investigated. The experimental and computed pressure and solid-volume-fraction distributions are compared and found to be in reasonable agreement although the experimental results exhibit more variation along the height of the riser than the computational results do. An extensive study is performed to assess the sensitivity of the computational results to a wide range of physical and numerical parameters. The computational results are seen to be robust. Thus, the uncertainties in these parameters cannot account for the differences between the experimental and computational results.


2015 ◽  
Vol 143 (3) ◽  
pp. 828-844 ◽  
Author(s):  
Jerôme Schalkwijk ◽  
Harmen J. J. Jonker ◽  
A. Pier Siebesma ◽  
Fred C. Bosveld

Abstract Results are presented of two large-eddy simulation (LES) runs of the entire year 2012 centered at the Cabauw observational supersite in the Netherlands. The LES is coupled to a regional weather model that provides the large-scale information. The simulations provide three-dimensional continuous time series of LES-generated turbulence and clouds, which can be compared in detail to the extensive observational dataset of Cabauw. The LES dataset is available from the authors on request. This type of LES setup has a number of advantages. First, it can provide a more statistical approach to the study of turbulent atmospheric flow than the more common case studies, since a diverse but representative set of conditions is covered, including numerous transitions. This has advantages in the design and evaluation of parameterizations. Second, the setup can provide valuable information on the quality of the LES model when applied to such a wide range of conditions. Last, it also provides the possibility to emulate observation techniques. This might help detect limitations and potential problems of a variety of measurement techniques. The LES runs are validated through a comparison with observations from the observational supersite and with results from the “parent” large-scale model. The long time series that are generated, in combination with information on the spatial structure, provide a novel opportunity to study time scales ranging from seconds to seasons. This facilitates a study of the power spectrum of horizontal and vertical wind speed variance to identify the dominant variance-containing time scales.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 412 ◽  
Author(s):  
Artur Wiatrowski ◽  
Michał Mazur ◽  
Agata Obstarczyk ◽  
Damian Wojcieszak ◽  
Danuta Kaczmarek ◽  
...  

In this paper, a comparison of TiO2 thin films prepared by magnetron sputtering with a continuous and pulsed gas flow was presented. Structural, surface, optical, and mechanical properties of deposited titanium dioxide coatings were analyzed with the use of a wide range of measurement techniques. It was found that thin films deposited with a gas impulse had a nanocrystalline rutile structure instead of fibrous-like anatase obtained with a continuous gas flow. TiO2 thin films deposited with both techniques were transparent in the visible wavelength range, however, a much higher refractive index and packing density were observed for coatings deposited by the pulsed gas technique. The application of a gas impulse improved the hardness and scratch resistance of the prepared TiO2 thin films.


Author(s):  
Michael J. Benson ◽  
Bret P. Van Poppel ◽  
Christopher J. Elkins ◽  
Mark Owkes

Magnetic Resonance Thermometry (MRT) is a maturing diagnostic used to measure three-dimensional temperature fields. It has great potential for investigating fluid flows within complex geometries leveraging medical grade MRI equipment and software along with novel measurement techniques. The efficacy of the method in engineering applications increases when coupled with other well established MRI-based techniques such as Magnetic Resonance Velocimetry (MRV). In this study, a challenging geometry is presented with direct application to a complex gas turbine blade cooling scheme. Turbulent external flow with a Reynolds number of 136,000 passes a hollowed NACA-0012 airfoil with internal cooling features. Inserts within the airfoil, fed by a second flow line with an average temperature difference of 30 K from the main flow and a temperature-dependent Reynolds number in excess of 1,800, produce a conjugate heat transfer scenario including impingement cooling on the inside surface of the airfoil. The airfoil cooling scheme also includes zonal recirculation, surface film cooling, and trailing edge ejection features. The entire airfoil surface is constructed of a stereolithography resin — Accura 60 — with low thermal conductivity. The three-dimensional internal and external velocity field is measured using MRV. The fluid temperature field is measured within and outside of the airfoil with MRT and the results are compared with a computational fluid dynamics (CFD) solution to assess the current state of the art for combined MRV/MRT techniques for investigating these complex internal and external flows. The accompanying CFD analysis provides a prediction of the velocity and temperature fields, allowing for errors in the MRT technique to be estimated.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Michael J. Benson ◽  
Bret P. Van Poppel ◽  
Christopher J. Elkins ◽  
Mark Owkes

Magnetic resonance thermometry (MRT) is a maturing diagnostic tool used to measure three-dimensional temperature fields. It has a great potential for investigating fluid flows within complex geometries leveraging medical grade magnetic resonance imaging (MRI) equipment and software along with novel measurement techniques. The efficacy of the method in engineering applications increases when coupled with other well-established MRI-based techniques such as magnetic resonance velocimetry (MRV). In this study, a challenging geometry is presented with the direct application to a complex gas turbine blade cooling scheme. Turbulent external flow with a Reynolds number of 136,000 passes a hollowed NACA-0012 airfoil with internal cooling features. Inserts within the airfoil, fed by a second flow line with an average temperature difference of 30 K from the main flow and a temperature-dependent Reynolds number in excess of 1,800, produces a conjugate heat transfer scenario including impingement cooling on the inside surface of the airfoil. The airfoil cooling scheme also includes zonal recirculation, surface film cooling, and trailing edge ejection features. The entire airfoil surface is constructed of a stereolithography resin—Accura 60—with low thermal conductivity. The three-dimensional internal and external velocity field is measured using an MRV. The fluid temperature field is measured within and outside of the airfoil with an MRT, and the results are compared with a computational fluid dynamics (CFD) solution to assess the current state of the art for combined MRV/MRT techniques for investigating these complex internal and external flows. The accompanying CFD analysis provides a prediction of the velocity and temperature fields, allowing for errors in the MRT technique to be estimated.


Sign in / Sign up

Export Citation Format

Share Document