Polymer Composites Based on Polyvinyl Chloride and Biomass of Fallen Leaves

2021 ◽  
Vol 25 (5) ◽  
pp. 22-27
Author(s):  
P.S. Zakharov ◽  
A.D. Kudryavtsev ◽  
A.E. Shkuro ◽  
V.V. Gluhih ◽  
O.F. Shishlov

The results of assessing the possibilities of using of biomass of fallen leaves as a filler of composite polymer materials with a polyvinyl chloride polymer matrix are presented. Samples of composites with biomass of fallen leaves we obtained by extrusion and hot pressing method. The dependences of their physical and mechanical properties on the content of the filler were determined. These de-pendencies are given in the form of polynomial of the second degree. In terms of most physical and mechanical properties (with the exception of impact strength) composites with biomass of fallen leaves are superior to samples of wood-polymer composites with wood flour with a similar degree of filling. Made of a comparison of the effectiveness of three different plasticizers: dimethyl phthalate, dibutyl phthalate and dioctyl therephthalate. The most promising is the use of dibutyl phthalate as a plasticizer. It has been shown that the biomass of fallen leaves is an effective replacement for wood flour in the production of wood-polymer composite materials with a s fr.

2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Janis Kajaks ◽  
Karlis Kalnins ◽  
Sandris Uzulis ◽  
Juris Matvejs

AbstractWood polymer composites (WPC) are widely used materials in different industries because of many application, processing and recycling advantages compared to traditional thermoplastic polymer composites containing mineral fillers [1]. However, the commercial success of these materials primarily depends on improvements in moisture performance, and ability to use recycled and waste material as a wood filler. The research regarding WPC is focused on the chemical interaction between dissimilar material components with an aim to provide strong adhesion to the surface of wood filler-polymer matrix [2]. The goal of this paper was to present results of investigations of exploitation properties of composites containing different plywood production industry byproducts and polypropylene. It was shown that modification of all composites with coupling agent maleated polypropylene (MAPP) considerably improve physical mechanical properties (tensile, flexural, impact strength) of WPC. MAPP (5 wt.%) additions also significantly improve water resistance of WPC. SEM investigations confirmed positive action of interfacial modifiers on strengthening of adhesion interaction between components wood and PP matrix that give considerable increase of exploitation properties of the WPC.


2020 ◽  
Vol 148 ◽  
pp. 103445 ◽  
Author(s):  
Nesrine Bouhamed ◽  
Slim Souissi ◽  
Pierre Marechal ◽  
Mohamed Ben Amar ◽  
Olivier Lenoir ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 33-39
Author(s):  
N. V. Buiskykh

One of the areas of wood waste processing is their use in the production of wood-polymer composites (WPC). The relevance of wood-polymer products is due to the wide range of applications and qualities of this material. WPC does not rot, is not damaged by insects and fungi, does not contain harmful binders. Products from the duodenum do not crack, do not gouge, are waterproof, which makes them an excellent material for manufacturing a terrace board. However, the terrace board must have certain mechanical qualities, which will allow it to be used in fairly harsh conditions - under the action of humidity, UV radiation and under a certain load. This study aimed to determine the main physical and mechanical properties (density, strength at static bending, modulus of elasticity, water absorption, hardness, abrasion resistance, changes in linear dimensions with changing atmospheric environment) samples of terrace board manufacturing from duodenum with different fillers. Samples from a hollow terrace board, which were filled with polyethylene (PE) and polyvinyl chloride (PVC), were used for the study. Based on experimental studies, it was found that the density of both samples is quite high, close to the maximum; the difference is not significant, but when examining microslices under a microscope in samples with PE as a binder, a larger number of voids is observed, indicating the presence of excess moisture or lack of mineral fillers. It may also indicate the destruction of the polymer. It was determined that a number of other important indicators such as strength at static bending, modulus of elasticity, water absorption, abrasion resistance were the best in the samples with a filler of polyvinylchloride. The greatest difference was in the bending strength index and was 35%. It was also found that the hardness of both samples were equivalent. However, the modulus of elasticity of the sample with a filler with PE exceeded the performance of the sample with a filler with PVC by almost 2.5 times. Thus, based on the research, it is possible to identify a number of clear relationships that indicate that theuse of polyvinylchlorideas a binder significantly improves the physical and mechanical properties of the terrace board based on wood-polymer composite. The results of the research will solve the problem of improving the strength characteristics of wood-composite material to expand the range based on wood waste Keywords: density, hardness, modulus of elasticity, water absorption, abrasion resistance.


2021 ◽  
Vol 887 ◽  
pp. 144-150
Author(s):  
A.E. Shkuro ◽  
A.V. Artyomov ◽  
A.V. Savinovskikh

The paper studies issues related to physicochemical and chemical techniques for the modification of wood-polymer composites with a thermoplastic polymer matrix (WPCs) to improve their physical and mechanical properties. The physicochemical modification was performed by photochemical crosslinking with the exposure of WPC specimens to UV irradiation. Chemical modification was performed by introducing benzoyl peroxide into the material composition, leading to chemical crosslinking of polyethylene macromolecules of the WPC polymer matrix. As a result of the study, quantitative characteristics of the effect of the benzoyl peroxide content in the composite, as well as the WPC specimen UV irradiation intensity and duration on the basic physical and mechanical properties of the material have been obtained. The efficiency of physicochemical techniques for modifying WPCs has been estimated by changing the specimen properties such as Brinell hardness, water absorption, and impact strength. It has been found that the Brinell hardness increases by 80 % as compared to unmodified WPC specimens. Effective modification of wood-polymer composites with polymer matrices based on high-density polyethylene may lead to a significant improvement in the quality of products made of these materials.


Author(s):  
Dobrochna Ginter-Kramarczyk ◽  
Izabela Kruszelnicka ◽  
Michał Michałkiewicz ◽  
Przemysław Muszyński ◽  
Stanisław Zajchowski ◽  
...  

Abstract Background Modern technology, which has been getting more and more recognition in the world for the last several years, is the moving bed biofilm reactor (MBBR) technology. Currently, movable biofilters made of basic polymeric materials, polyethylene and polypropylene. Methods An innovative solution in the field, mainly because of the large active surface area for biological membrane can be wood polymer composites (WPC). In the research polypropylene (PP) and polyvinyl chloride (PVC) was used as the matrix. Two types of commercial wood flour also, selected from conifers, were selected for the study: Lignocel C 120 with particle sizes in the range of 70 μm–150 μm and L9 with dimensions of 0.8–1.1 mm and wood chips, which are used on an industrial scale for the production of chipboards, were used as a filler. A quantitative and qualitative analysis of newly formed biofilms was performed. Results The study showed a direct effect of the filler and its particle size on the susceptibility to the formation of the biofilm of on the composites surface. Conclusions Polypropylene PPH 648 T and 40% wt. of L9 type wood flour was the most susceptible to biofilm formation. Pure polypropylene PPH 648 T was the least susceptible material.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2006 ◽  
Vol 6 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Fauzi Febrianto ◽  
Dina Setyawati ◽  
Myrtha Karina ◽  
Edi Suhaimi Bakar ◽  
Yusuf Sudo Hadi

Sign in / Sign up

Export Citation Format

Share Document