Restoration of Soil from Herbicide Pollution using Biochar from Sewage Sludge and Sawdust

2021 ◽  
Vol 25 (6) ◽  
pp. 32-37
Author(s):  
L.V. Bryndina ◽  
O.V. Baklanova

The results of studies of the effect of biocoal (biochar) from sewage sludge and sawdust on the physicochemical and biological properties of soil treated with herbicides are presented. Biocoals were obtained by pyrolysis in the absence of oxygen at a temperature of 500 ° C. It was found that the combined bio-charms from sewage sludge and wood waste stimulate the vital activity of soil microorganisms, increasing their population days after 15 days by 13.5 times, increase the biodegradation of the herbicide in the soil by 5 times in comparison with the soil without biochar treatment. The introduction of the combined biochar at a dose of 5% into the soil contaminated with herbicide increased the growth rate of tomatoes by 5 times. The proposed method of using sewage sludge and sawdust makes it possible to solve not only the problems associated with their utilization, but also to effectively restore soil from pollution.

Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


2016 ◽  
Vol 30 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Agata Borowik ◽  
Jadwiga Wyszkowska

AbstractThe aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase – at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.


CATENA ◽  
2020 ◽  
Vol 189 ◽  
pp. 104484 ◽  
Author(s):  
Monika Skowrońska ◽  
Elżbieta J. Bielińska ◽  
Kazimierz Szymański ◽  
Barbara Futa ◽  
Jacek Antonkiewicz ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1003
Author(s):  
Zhuning Wu ◽  
Stefanie H. Korntner ◽  
Jos Olijve ◽  
Anne Maria Mullen ◽  
Dimitios I. Zeugolis

In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device’s physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of which were subsequently assessed. Gelatin preparations with low bloom index resulted in hydrogels with significantly (p < 0.05) lower compression stress, elastic modulus and resistance to enzymatic degradation, and significantly higher (p < 0.05) free amine content than gelatin preparations with high bloom index. Gelatin preparations with high endotoxin levels resulted in films that induced significantly (p < 0.05) higher macrophage clusters than gelatin preparations with low endotoxin level. Our data suggest that the bloom index modulates the physicochemical properties, and the endotoxin content regulates the biological response of gelatin biomaterials. Although polyethylene glycol succinimidyl glutarate crosslinking significantly (p < 0.05) increased compression stress, elastic modulus and resistance to enzymatic degradation, and significantly (p < 0.05) decreased free amine content, at the concentration used, it did not provide sufficient structural integrity to support cell culture. Therefore, the quest for the optimal gelatin crosslinker continues.


2004 ◽  
Vol 281 (1-2) ◽  
pp. 45-54 ◽  
Author(s):  
Shirui Mao ◽  
Xintao Shuai ◽  
Florian Unger ◽  
Michael Simon ◽  
Dianzhou Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document