scholarly journals Impact of temperature on the biological properties of soil

2016 ◽  
Vol 30 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Agata Borowik ◽  
Jadwiga Wyszkowska

AbstractThe aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase – at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

2021 ◽  
Vol 22 (23) ◽  
pp. 12753
Author(s):  
Magdalena Zaborowska ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik ◽  
Jan Kucharski

Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA–microorganism–plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon–Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg−1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and β-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.


2021 ◽  
Vol 25 (6) ◽  
pp. 32-37
Author(s):  
L.V. Bryndina ◽  
O.V. Baklanova

The results of studies of the effect of biocoal (biochar) from sewage sludge and sawdust on the physicochemical and biological properties of soil treated with herbicides are presented. Biocoals were obtained by pyrolysis in the absence of oxygen at a temperature of 500 ° C. It was found that the combined bio-charms from sewage sludge and wood waste stimulate the vital activity of soil microorganisms, increasing their population days after 15 days by 13.5 times, increase the biodegradation of the herbicide in the soil by 5 times in comparison with the soil without biochar treatment. The introduction of the combined biochar at a dose of 5% into the soil contaminated with herbicide increased the growth rate of tomatoes by 5 times. The proposed method of using sewage sludge and sawdust makes it possible to solve not only the problems associated with their utilization, but also to effectively restore soil from pollution.


Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


Author(s):  
Anil Kumar Verma ◽  
Raj Dev Singh ◽  
Brijesh Yadav ◽  
Ravi Kumar Meena ◽  
Chiranjeev Kumawat

2016 ◽  
Vol 5 (3) ◽  
pp. 21-25
Author(s):  
Natalya Anatolyevna Ilyina ◽  
Tatyana Valentinovna Fufaeva ◽  
Natalya Anatolyevna Kazakova ◽  
Nataliya Mikhailovna Kasatkina ◽  
Evgeniya Alexandrovna Vilkova

The paper assesses the status of the soil cover associated with the pollution of its waste chemical production and consumption. The authors present the data of formaldehyde and toluene influence on the abundance of actinomycetes, heterotrophic bacteria and fungi, as these groups of microorganisms provide self-purification capacity of the soil and participate in soil formation processes. In this paper microbiological and physico-chemical methods of research are used. The study of species composition changes of some soil microorganisms groups of leached chernozem under the influence of formaldehyde and toluene showed that this factor causes changes in the complex of soil microorganisms. This factor is reflected in the decreased species richness and diversity and increase of pollution-tolerant microorganisms. These studies investigate a number of microorganisms that provide self-purification capacity of the soil and participate in soil formation. The results show the nature of the influence of different doses of formaldehyde and toluene on the structure and functioning of the complex of soil microorganisms, as well as reveal the mechanism of action of chemicals (formaldehyde and toluene) on soil microbiota associated with its resistance and the manifestation of toxicity of the soil.


2020 ◽  
Vol 2 (1) ◽  
pp. 48-54
Author(s):  
Mhd Zakaria

The purposes of this research are to know the level of paddy field degradation, mapping level of paddy field degradation and analyze effort of paddy field rehabilitation in Beringin Subdistrict of Deli Serdang Regency of North Sumatera Indonesia to increase rice productivity. This research was conducted in Medan Krio Village, District Sunggal Regency Deli Serdang of North Sumatera. The study was conducted in March to July 2017. This research used nonfactorial Randomized Block Design (RBD) with 5 levels organic dosage treatment of Compost Waste City, i.e: B0: Control, B1: Dose 1.5% (36,00 ton/ha), B2: Dose 3% (72,00 ton/ha), B3: Dose 4.5% (108,00 ton/ha), B4: Dose 6% (144,0 ton/ha). The parameters that will be analyzed are the physical, chemical and biological properties of soil in paddy fields. The result showed, treatment with Dose 6% (B4) can (1) improve physical properties of soil Bulk Density, Porosity and the effective depth of soil; (2) increase the C-organic content, N-Total levels of P-Available, CEC soil, and low C/N Ratio; (3) increase Soil organic matter and total Microbes. So, Treatment Dose 6% (B4) of compost waste city gives the best effect to the physical, chemical and biological properties of soil in paddy fields


Author(s):  
Luciene Nunes Barcelos Martins ◽  
Flávia Louzeiro de Aguiar Santiago ◽  
Marcela Susana Montecchia ◽  
Olga Susana Correa ◽  
Orivaldo José Saggin Junior ◽  
...  

2020 ◽  
Vol 45 (1) ◽  
pp. 29-59
Author(s):  
Dan Naylor ◽  
Natalie Sadler ◽  
Arunima Bhattacharjee ◽  
Emily B. Graham ◽  
Christopher R. Anderton ◽  
...  

Communities of soil microorganisms (soil microbiomes) play a major role in biogeochemical cycles and support of plant growth. Here we focus primarily on the roles that the soil microbiome plays in cycling soil organic carbon and the impact of climate change on the soil carbon cycle. We first discuss current challenges in understanding the roles carried out by highly diverse and heterogeneous soil microbiomes and review existing knowledge gaps in understanding how climate change will impact soil carbon cycling by the soil microbiome. Because soil microbiome stability is a key metric to understand as the climate changes, we discuss different aspects of stability, including resistance, resilience, and functional redundancy.We then review recent research pertaining to the impact of major climate perturbations on the soil microbiome and the functions that they carry out. Finally, we review new experimental methodologies and modeling approaches under development that should facilitate our understanding of the complex nature of the soil microbiome to better predict its future responses to climate change.


Sign in / Sign up

Export Citation Format

Share Document