scholarly journals Nanoparticle-Mediated Interleukin-12 Cancer Gene Therapy

2010 ◽  
Vol 13 (3) ◽  
pp. 472 ◽  
Author(s):  
Crispin Dass ◽  
Somayeh Hallaj-Nezhadi ◽  
Farzaneh Lotfipour

Interleukin-12 (Il-12) is a heterodimeric cytokine which has been proved to possess antitumor effects in various animal models via stimulating the immune system. The main problem associated with Il-12 protein delivery is its instability as well as cytotoxicity subsequent to systemic administration in rodents and in human clinical trials. However, gene delivery can be used to deliver genes of interest to the tumor site. Hence, a large number of studies have been undertaken to deliver genes of interest to the tumor site through viral or non-viral vectors. Viral DNA delivery systems suffer from safety concern due to the toxicity of the viruses and strong immune response; while non-viral gene delivery systems proffer lower transfection efficiency. Nevertheless, nanometer-size complex of therapeutic DNA may demonstrate more efficient for administration of therapeutic genes to solid tumors compared to administration of naked plasmid DNA. Nanoparticle-based gene delivery systems might be more pertinent, due to the enhanced tissue penetrability, improved cellular uptake. Il-12 gene delivery has already been reported with different nanoparticles containing DNA. This article provides a review on the in vivo and in vitro studies using various nanoparticles, for delivery of the Il-12 genes to neoplastic cells. The future of these promising approaches lies in the development of better techniques for preparing il-12 gene delivery systems with complete efficiency of viral vectors in addition to the highest safety for cancer patients.

Nano LIFE ◽  
2010 ◽  
Vol 01 (03n04) ◽  
pp. 219-237 ◽  
Author(s):  
SHARDOOL JAIN ◽  
HUSAIN ATTARWALA ◽  
MANSOOR AMIJI

Gene therapy holds tremendous promise in prevention and treatment of diseases as the approach is based on regulating the expression of genes that are responsible for pathological conditions. The biggest bottleneck for gene delivery has been the development of safe and efficacious delivery systems. Although non-viral vectors are considered as much safer options than their viral counterparts, they suffer from low transfection efficiency. In this review, we highlight the role of non-condensing polymeric delivery systems for oral and systemic gene delivery. Using evidence from contemporary literature, non-condensing polymeric microparticle and nanoparticle systems afford physical encapsulation of the nucleic acid construct and can be engineered for targeted delivery to tissues and cells. Additionally, these systems have shown less toxicity and afford sustained cytoplasmic DNA delivery for efficient nuclear uptake and transfection for both DNA vaccines and therapeutic genes.


2005 ◽  
Vol 4 (6) ◽  
pp. 615-625 ◽  
Author(s):  
Sushma Kommareddy ◽  
Sandip B. Tiwari ◽  
Mansoor M. Amiji

Significant advances in the understanding of the genetic abnormalities that lead to the development, progression, and metastasis of neoplastic diseases has raised the promise of gene therapy as an approach to medical intervention. Most of the clinical protocols that have been approved in the United States for gene therapy have used the viral vectors because of the high efficiency of gene transfer. Conventional means of gene delivery using viral vectors, however, has undesirable side effects such as insertion of mutational viral gene into the host genome and development of replication competent viruses. Among non-viral gene delivery methods, polymeric nanoparticles are increasingly becoming popular as vectors of choice. The major limitation of these nanoparticles is poor transfection efficiency at the target site after systemic administration due to uptake by the cells of reticuloendothelial system (RES). In order to reduce the uptake by the cells of the RES and improve blood circulation time, these nanoparticles are coated with hydrophilic polymers such as poly(ethylene glycol) (PEG). This article reviews the use of such hydrophilic polymers employed for improving the circulation time of the nanocarriers. The mechanism of polymer coating and factors affecting the circulation time of these nanocarriers will be discussed. In addition to the long circulating property, modifications to improve the target specificity of the particles and the limitations of steric protection will be analyzed.


2019 ◽  
Vol 2 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Kiel Sung Yong ◽  
◽  
Wan Kim Sung ◽  
◽  
◽  
...  

Gene therapy is the unique method for the use of genetic materials such as Messenger ribonucleic acid (mRNA), plasmid deoxyribonucleic acid (pDNA), and small interfering ribonucleic acid (siRNA) into specific host-cells for the treatment of inherited disorders in any diseases. The successful way to utilize the gene therapy is to develop the efficient cancer gene delivery systems. In this paper, the successful and efficient gene delivery systems are briefly reviewed on the basis of bio-reducible polymeric systems for cancer therapy. The viral gene delivery systems such as RNA-based viral and DNA-based viral vectors are also discussed. The development of bio-reducible polymer for gene delivery system has briefly discussed for the efficient cancer gene delivery of viral vectors and non-viral vectors.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2609
Author(s):  
Emi Haladjova ◽  
Stanislav Rangelov ◽  
Christo Tsvetanov

Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx–PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 793
Author(s):  
J.F.A. Valente ◽  
P. Pereira ◽  
A. Sousa ◽  
J.A. Queiroz ◽  
F. Sousa

Gene therapy could be simply defined as a strategy for the introduction of a functional copy of desired genes in patients, to correct some specific mutation and potentially treat the respective disorder. However, this straightforward definition hides very complex processes related to the design and preparation of the therapeutic genes, as well as the development of suitable gene delivery systems. Within non-viral vectors, polymeric nanocarriers have offered an ideal platform to be applied as gene delivery systems. Concerning this, the main goal of the study was to do a systematic evaluation on the formulation of pDNA delivery systems based on the complexation of different sized plasmids with chitosan (CH) or polyethyleneimine (PEI) polymers to search for the best option regarding encapsulation efficiency, surface charge, size, and delivery ability. The cytotoxicity and the transfection efficiency of these systems were accessed and, for the best p53 encoding pDNA nanosystems, the ability to promote protein expression was also evaluated. Overall, it was showed that CH polyplexes are more efficient on transfection when compared with the PEI polyplexes, resulting in higher P53 protein expression. Cells transfected with CH/p53-pDNA polyplexes presented an increase of around 54.2% on P53 expression, while the transfection with the PEI/p53-pDNA polyplexes resulted in a 32% increase.


2019 ◽  
Vol 16 (7) ◽  
pp. 588-608 ◽  
Author(s):  
Anjuman A. Begum ◽  
Istvan Toth ◽  
Waleed M. Hussein ◽  
Peter M. Moyle

Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.


2021 ◽  
Vol 21 ◽  
Author(s):  
Fernando A. de Oliveira ◽  
Lindomar J. C. Albuquerque ◽  
Gwendoline Delecourt ◽  
Véronique Bennevault ◽  
Philippe Guégan ◽  
...  

Background: Gene delivery is a promising technology for treating diseases linked to abnormal gene expression. Since nucleic acids are the therapeutic entities in such approach, a transfecting vector is required because the macromolecules are not able to efficiently enter the cells by themselves. Viral vectors have been evidenced to be highly effective in this context; however, they suffer from fundamental drawbacks, such as the ability to stimulate immune responses. The development of synthetic vectors has accordingly emerged as an alternative. Objectives: Gene delivery by using non-viral vectors is a multi-step process that poses many challenges, either regarding the extracellular or intracellular media. We explore the delivery pathway and afterwards, we review the main classes of non-viral gene delivery vectors. We further focus on the progresses concerning polyethylenimine-based polymer-nucleic acid polyplexes, which have emerged as one of the most efficient systems for delivering genetic material inside the cells. Discussion: The complexity of the whole transfection pathway, along with a lack of fundamental understanding, particularly regarding the intracellular trafficking of nucleic acids complexed to non-viral vectors, probably justifies the current (beginning of 2021) limited number of formulations that have progressed to clinical trials. Truly, successful medical developments still require a lot of basic research. Conclusion: Advances in macromolecular chemistry and high-resolution imaging techniques will be useful to understand fundamental aspects towards further optimizations and future applications. More investigations concerning the dynamics, thermodynamics and structural parameters of polyplexes would be valuable since they can be connected to the different levels of transfection efficiency hitherto evidenced.


2021 ◽  
Author(s):  
Xiao-Qi Yu ◽  
Rui-Mo Zhao ◽  
Yu Guo ◽  
Hui-Zhen Yang ◽  
Ji Zhang

The development of cationic non-viral gene vectors that may overcome the obstacles in gene delivery is of great significance to gene therapy. Metallic complexes with high affinity to nucleic acid...


2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


Sign in / Sign up

Export Citation Format

Share Document