scholarly journals Organogels in Drug Delivery: A Special Emphasis on Pluronic Lecithin Organogels

2016 ◽  
Vol 19 (2) ◽  
pp. 252 ◽  
Author(s):  
Hashem Alsaab ◽  
Sindhu Prabha Bonam ◽  
Dherya Bahl ◽  
Pallabita Chowdhury ◽  
Kenneth Alexander ◽  
...  

Organogels have emerged as an alternative carrier for small and macromolecules via transdermal, oral, rectal and ophthalmic routes. Pluronic lecithin organogels (PLO gels) are lecithin-based organogels widely used in compounding pharmacies as a vehicle for enhancing the transdermal permeability of many therapeutic drugs. However, the scientific and systematic evidence in support of how well PLO gels help in transdermal delivery is scanty. Recently, some clinical studies have reported nearly complete lack of bioavailability of certain topically administered drugs from PLO gels. The present review aims at summarizing gels and organogels, with a focus on the use of PLO gels in transdermal drug delivery. A special emphasis is placed on controversies looming over the use of PLO gels as a delivery platform for drugs via transdermal route. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. Objective: In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. Method: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 402 ◽  
Author(s):  
Seunghee Lee ◽  
Shayan Fakhraei Lahiji ◽  
Jeesu Jang ◽  
Mingyu Jang ◽  
Hyungil Jung

The dissolving microneedle (DMN) patch is a transdermal delivery system, containing arrays of micro-sized polymeric needles capable of encapsulating therapeutic drugs within their matrix and releasing them into the skin. However, the elastic properties of the skin prevent DMNs from complete insertion and accurate delivery of encapsulated compounds into the skin. Moreover, the adhesive materials used in patches may cause skin irritation, inflammation, and redness. Therefore, we developed a patchless, micro-pillar integrated DMN (P-DMN) that is simple to fabricate and enhances transdermal drug delivery compared with traditional DMN patches. The micro-pillars were made of polymethyl methacrylate at a height of 300 μm and a base diameter of 500 μm. To fabricate P-DMNs, we employed hyaluronic acid, which is a widely used derma filler and plays a role in tissue re-epithelialization. We demonstrate that utilizing P-DMNs significantly improves the delivery efficiency of an encapsulated drug surrogate (91.83% ± 7.75%) compared with traditional DMNs (64.86% ± 8.17%). Interestingly, P-DMNs remarkably increase the skin penetration accuracy rate of encapsulated drugs, up to 97.78% ± 2.22%, compared with 44.44% ± 7.85% in traditional DMNs. Our findings suggest that P-DMNs could serve as a highly accurate and efficient platform for transdermal delivery of various types of micro- and macro-biomolecules.


Author(s):  
Yi-Qun Yu ◽  
Xue Yang ◽  
Xiao-Fang Wu ◽  
Yi-Bin Fan

The transdermal route of administration provides numerous advantages over conventional routes i.e., oral or injectable for the treatment of different diseases and cosmetics applications. The skin also works as a reservoir, thus deliver the penetrated drug for more extended periods in a sustained manner. It reduces toxicity and local irritation due to multiple sites for absorption and owes the option of avoiding systemic side effects. However, the transdermal route of delivery for many drugs is limited since very few drugs can be delivered at a viable rate using this route. The stratum corneum of skin works as an effective barrier, limiting most drugs’ penetration posing difficulty to cross through the skin. Fortunately, some non-invasive methods can significantly enhance the penetration of drugs through this barrier. The use of nanocarriers for increasing the range of available drugs for the transdermal delivery has emerged as a valuable and exciting alternative. Both the lipophilic and hydrophilic drugs can be delivered via a range of nanocarriers through the stratum corneum with the possibility of having local or systemic effects to treat various diseases. In this review, the skin structure and major obstacle for transdermal drug delivery, different nanocarriers used for transdermal delivery, i.e., nanoparticles, ethosomes, dendrimers, liposomes, etc., have been discussed. Some recent examples of the combination of nanocarrier and physical methods, including iontophoresis, ultrasound, laser, and microneedles, have also been discussed for improving the therapeutic efficacy of transdermal drugs. Limitations and future perspectives of nanocarriers for transdermal drug delivery have been summarized at the end of this manuscript.


2020 ◽  
Vol 27 (6) ◽  
pp. 919-954 ◽  
Author(s):  
Raluca Ianchis ◽  
Claudia Mihaela Ninciuleanu ◽  
Ioana Catalina Gifu ◽  
Elvira Alexandrescu ◽  
Cristina Lavinia Nistor ◽  
...  

The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like ”a tree of life” bearing different kinds of fruits and leaves proper for human healing.


Author(s):  
Delly Ramadon ◽  
Maeliosa T. C. McCrudden ◽  
Aaron J. Courtenay ◽  
Ryan F. Donnelly

AbstractTransdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract


2009 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Jose Juan Escobar-Chavez ◽  
Dalia Bonilla-Martínez ◽  
Martha Angélica Villegas-González ◽  
Isabel Marlen Rodríguez-Cruz ◽  
Clara Luisa Domínguez-Delgado

Abstract Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. Ultrasound has been used extensively for medical diagnostics and to a certain extent in medical therapy (physiotherapy, ultrasonic surgery, hyperthermia). Nevertheless, it has only recently become popular as a technique to enhance drug release from drug delivery systems. A number of studies suggest the use of ultrasound as an external mean of delivering drugs at increased rates and at desired times. This review presents the main findings in the field of sonophoresis, namely transdermal drug delivery and transdermal monitoring. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.


Author(s):  
SARIPILLI RAJESWARI ◽  
RAJESWARI PULLABHATLA ◽  
CHUKKA YERNI SATYAVATHI

Bi-gels semi solid formulation is combination of organogel and hydrogel with better application property such as pharmaceutical and cosmetics. The main objective of this review is specially focuses on application of bi-gels as drug delivery vehicles by transdermal route. It contains two different phases which are polar and nonpolar due to which, it possess some significant features such as ability to deliver the hydrophilic and hydrophobic drugs which also have improved permeability of drugs, better spreading ability, and water wash ability. Hence, bigels have both organogels and hydrogels they can enhanced hydration of stratum corneum and also had an ability to manipulate the drug release rate from the dosage from.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Leonna Dsouza ◽  
Vivek M. Ghate ◽  
Shaila A. Lewis

AbstractDerma roller, a device rolled onto the skin to form micropores, is extensively used for cosmetic purposes. The pores thus created are utilized to either result in the induction of collagen production, leading to glowing and wrinkle-free skin or for permeating the applied formulations to the site of action within the skin. Recent studies have shown the benefits of using derma rollers for transdermal delivery of drugs. In the nascent stage, this approach paves a way to successfully breach the stratum corneum and aid in the movement of medications directed towards the dermis and the hair follicles. The review essentially summarizes the evidence of the use of derma rollers in cosmetic setup, their designing, and the preclinical and clinical reports of efficacy, safety, and concerns when translated for pharmaceutical purposes and transdermal drug delivery.


Sign in / Sign up

Export Citation Format

Share Document