scholarly journals Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications

Author(s):  
Yi-Qun Yu ◽  
Xue Yang ◽  
Xiao-Fang Wu ◽  
Yi-Bin Fan

The transdermal route of administration provides numerous advantages over conventional routes i.e., oral or injectable for the treatment of different diseases and cosmetics applications. The skin also works as a reservoir, thus deliver the penetrated drug for more extended periods in a sustained manner. It reduces toxicity and local irritation due to multiple sites for absorption and owes the option of avoiding systemic side effects. However, the transdermal route of delivery for many drugs is limited since very few drugs can be delivered at a viable rate using this route. The stratum corneum of skin works as an effective barrier, limiting most drugs’ penetration posing difficulty to cross through the skin. Fortunately, some non-invasive methods can significantly enhance the penetration of drugs through this barrier. The use of nanocarriers for increasing the range of available drugs for the transdermal delivery has emerged as a valuable and exciting alternative. Both the lipophilic and hydrophilic drugs can be delivered via a range of nanocarriers through the stratum corneum with the possibility of having local or systemic effects to treat various diseases. In this review, the skin structure and major obstacle for transdermal drug delivery, different nanocarriers used for transdermal delivery, i.e., nanoparticles, ethosomes, dendrimers, liposomes, etc., have been discussed. Some recent examples of the combination of nanocarrier and physical methods, including iontophoresis, ultrasound, laser, and microneedles, have also been discussed for improving the therapeutic efficacy of transdermal drugs. Limitations and future perspectives of nanocarriers for transdermal drug delivery have been summarized at the end of this manuscript.

Author(s):  
Delly Ramadon ◽  
Maeliosa T. C. McCrudden ◽  
Aaron J. Courtenay ◽  
Ryan F. Donnelly

AbstractTransdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract


2020 ◽  
Vol 9 (2) ◽  
pp. 542 ◽  
Author(s):  
Rezvan Jamaledin ◽  
Concetta Di Natale ◽  
Valentina Onesto ◽  
Zahra Taraghdari ◽  
Ehsan Zare ◽  
...  

The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Leonna Dsouza ◽  
Vivek M. Ghate ◽  
Shaila A. Lewis

AbstractDerma roller, a device rolled onto the skin to form micropores, is extensively used for cosmetic purposes. The pores thus created are utilized to either result in the induction of collagen production, leading to glowing and wrinkle-free skin or for permeating the applied formulations to the site of action within the skin. Recent studies have shown the benefits of using derma rollers for transdermal delivery of drugs. In the nascent stage, this approach paves a way to successfully breach the stratum corneum and aid in the movement of medications directed towards the dermis and the hair follicles. The review essentially summarizes the evidence of the use of derma rollers in cosmetic setup, their designing, and the preclinical and clinical reports of efficacy, safety, and concerns when translated for pharmaceutical purposes and transdermal drug delivery.


2016 ◽  
Vol 19 (2) ◽  
pp. 252 ◽  
Author(s):  
Hashem Alsaab ◽  
Sindhu Prabha Bonam ◽  
Dherya Bahl ◽  
Pallabita Chowdhury ◽  
Kenneth Alexander ◽  
...  

Organogels have emerged as an alternative carrier for small and macromolecules via transdermal, oral, rectal and ophthalmic routes. Pluronic lecithin organogels (PLO gels) are lecithin-based organogels widely used in compounding pharmacies as a vehicle for enhancing the transdermal permeability of many therapeutic drugs. However, the scientific and systematic evidence in support of how well PLO gels help in transdermal delivery is scanty. Recently, some clinical studies have reported nearly complete lack of bioavailability of certain topically administered drugs from PLO gels. The present review aims at summarizing gels and organogels, with a focus on the use of PLO gels in transdermal drug delivery. A special emphasis is placed on controversies looming over the use of PLO gels as a delivery platform for drugs via transdermal route. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2019 ◽  
Vol 9 (1) ◽  
pp. 252-256
Author(s):  
Syam S. Nair

Skin is an attractive route for drug delivery. However poor permeation of drugs across the skin due to the presence of extremely ordered architecture of outermost layer of skin, led to several investigation to improve the permeability of drugs. Polysaccharides remain widely studied biomaterial for the sustained delivery of drug molecules across the skin. The advance of hyaluronic acid (HA) chemistry with multiple benefits has improved the attention of research groups for its application in the skin transportation of drug molecules. Beginning from the advantages of transdermal route, the present review details the application of HA in transdermal drug delivery. In the last few decades, substantial investigation in the domain has improved the requirement for an outline of all the developments, which is depicted in the review. The review also presented different types of HA based transdermal devices such as transferosomes, nanoemulsions, microneedle etc and their potential to improve the transdermal drug delivery. Furthermore the application of HA through chemical modification as a potential transdermal device is also presented. Keywords: Hyaluronic acid, transdermal drug delivery, microneedles, nanoemulsion, hydrogel


Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. Objective: In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. Method: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


Author(s):  
Joshi Hrushikesh Anantrao ◽  
Pandye Aaditya Nath ◽  
Patil Rajendra Nivrutti

Transdermal Drug Delivery System (TDDS) is described as a self-contained or discrete dosage form that is applied to the intact skin. This rout of drug administration of drugs through the skin for therapeutic use is an alternative approach to oral, intravascular, subcutaneous, and transmucosal routes. The delivery of drugs through the skin to the systemic circulation provides a convenient route of administration for a variety of clinical indications. Transdermal Drug Delivery System allows continuous drug administration, use of drugs with short biological half lives, avoids increases hepatic first pass elimination and rapid termination of medication by removing the transdermal drug delivery system from the skin.  Various transdermal technologies may be applied for different categories of pharmaceuticals used for the treatment of disorders of the skin or for systemic effects to treat diseases of other organs. Several transdermal products and applications include hormone replacement therapy, contraception, pain management, angina pectoris, smoking cessation, and neurological disorders such as Parkinson's disease. The most commonly used transdermal system is the skin patch using various types of technologies. Stratum corneum is the outermost layer of the skin and it is the main barrier layer for permeation of drug in transdermal delivery of drugs. So, to circumvent the barrier properties of stratum corneum and to increase the flux of drug through skin membrane various penetration enhancement techniques are used in transdermal drug delivery system. The review presents different physical and chemical methods in penetration enhancement approaches and to optimize the transdermal delivery system.


2021 ◽  
Vol 11 (2) ◽  
pp. 113-120
Author(s):  
Neha Sharma ◽  
Tarun Kumar Sharma ◽  
Vinay Pandit ◽  
M. S Ashawat

Transdermal drug delivery system used to transport the drug across the skin deep into systemic circulation. The main advantages of Transdermal drug delivery system improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. But most of therapeutic agents is limited due to thickness of stratum corneum, which act as a barrier for the delivery of various drug molecules and only few molecules are able to reach the action site. Microneedles are the new form of delivery system, which are used to increase the delivery of drug through this route and overcoming the number of problems related to conventional drug delivery system the main aim of this review to focus on new innovation in transdermal drug delivery systems. In the microneedle drug delivery system, the skin is temporarily broken, that creating micron size pathways that deliver the sufficient amount of drug directly into the stratum corneum from which the drug can directly go into the systemic circulation. In this review, we describe different type of microneedles can be solid, coated, dissolving and biodegradable microneedles and their method of fabrication. Microneedles can be manufactured in different forms like hollow, solid, and dissolving. Also describe materials used for fabrication, fabrication techniques, methodology of drug delivery such as Poke and patch, Coat and poke, Poke and release, Poke and flow and evaluation parameters.


2009 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Jose Juan Escobar-Chavez ◽  
Dalia Bonilla-Martínez ◽  
Martha Angélica Villegas-González ◽  
Isabel Marlen Rodríguez-Cruz ◽  
Clara Luisa Domínguez-Delgado

Abstract Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. Ultrasound has been used extensively for medical diagnostics and to a certain extent in medical therapy (physiotherapy, ultrasonic surgery, hyperthermia). Nevertheless, it has only recently become popular as a technique to enhance drug release from drug delivery systems. A number of studies suggest the use of ultrasound as an external mean of delivering drugs at increased rates and at desired times. This review presents the main findings in the field of sonophoresis, namely transdermal drug delivery and transdermal monitoring. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.


Sign in / Sign up

Export Citation Format

Share Document