Bati Raman Field Immiscible CO2 Application--Status Quo and Future Plans

2008 ◽  
Vol 11 (04) ◽  
pp. 778-791 ◽  
Author(s):  
Secaeddin Sahin ◽  
Ulker Kalfa ◽  
Demet Celebioglu

Summary The Bati Raman field is the largest oil field in Turkey and contains approximately 1.85 billion bbl of oil initially in place. The oil is heavy (12°API), with high viscosity and low solution-gas content. Primary recovery was less than 2% of oil originally in place (OOIP). Over the period of primary recovery (1961-86), the reservoir underwent extensive pressure depletion from 1,800 psig to as low as 400 psig in some regions, resulting in a production decline from 9,000 to 1,600 STB/D. In March 1986, a carbon-dioxide (CO2) -injection pilot in a 1,200-acre area containing 33 wells was initiated in the western portion of the field. The gas-injection was initially cyclic. In 1988, the gas injection scheme was converted to a CO2-flood process. Later, the process was extended to cover the whole field. A peak daily production rate of 13,000 STB/D was achieved, whereas rate would have been less than 1,600 STB/D without CO2 application. However, the field has undergone a progressive production decline since 1995to recent levels of approximately 5,500 STB/D. Polymer-gel treatments were carried out to increase the CO2 sweep efficiency. Multilateral- and horizontal-well technology also was applied on a pilot scale to reach the bypassed oil. A water-alternating-gas (WAG) application has been applied extensively in the western part of the field. Current production is 7,000 STB/D. This paper documents more than 25 years of experience of the Turkish Petroleum Corporation (TPAO) on the design and operation of this full-field immiscible CO2-injection project conducted in the Bati Raman oil field in Turkey. The objective is to update the current status report, update the reservoir/field problems that TPAO has encountered (unpredictable problems and results), and provide a critical evaluation of the success of the project. Introduction The Bati Raman field is the biggest oil accumulation in Turkey and is operated by TPAO. It contains very viscous and low-API-gravity oil in a very challenging geological environment. Because of the fact that the recovery factor by primary recovery was limited, several enhanced-oil-recovery (EOR) techniques had been proposed and tested at the pilot level in the 1970s and 1980s. On the basis of the success of the laboratory tests and the vast amount of CO2 available in a neighboring field, which is only 55 miles away from the Bati Raman field, huff ‘n’ puff injection was started in the early 1980s. Because of the early breakthrough of CO2 in offset wells in a short period of time, the project was converted to field-scale random-pattern continuous injection. During more than 20 years of injection, the recovery peaked at approximately 13,000 STB/D and began to decline, reaching today's value of approximately 7,000 STB/D. In the case of Bati Raman, in its mature, the injected agent is bypassing the remaining oil and production is curtailed by excessively high gas/oil ratios (GORs). The naturally fractured character of the reservoir rock has been a challenge for establishing successful 3D conformance from the beginning, and its impact is even more pronounced in the later stages of the process. Therefore, the field requires modifications in the reservoir-management scheme to improve the recovery factor and to improve productivity of the current wells.

2021 ◽  
Author(s):  
Khadijah Ibrahim ◽  
Petrus Nzerem ◽  
Ayuba Salihu ◽  
Ikechukwu Okafor ◽  
Oluwaseun Alonge ◽  
...  

Abstract The development plan of the new oil field discovered in a remote offshore environment, Niger Delta, Nigeria was evaluated. As the oil in place is uncertain, a probabilistic approach was used to estimate the STOOIP using the low, mid, and high cases. The STOOIP for these cases were 95 MMSTB, 145 MMSTB and 300 MMSTB which are the potential amount of oil in the reservoir. Rock and fluid properties were determined using PVT sample and then matched to the Standing correlations with an RMS of 4.93%. The performance of the different well models were analyzed, and sensitivities were run to provide detailed information to reduce the uncertainties of the parameters. Furthermore, production forecast was done for the field for the different STOOIP using the predicted number of producer and injector wells. The timing of the wells was accurately allocated to provide information for the drillers to work on the wells. From the production forecast, the different STOOIP cases had a water cut ranging from 68-73% at the end of the 15-year field life. The recoverable oil estimate was accounted for 33.25 MMSTB for 95 MMSTB (low), 55.1 MMSTB for 145 MMSTB (mid) and 135 MMSTB for 300 MMSTB (high) at 35%, 38% and 45% recovery factor. Based on the proposed development plan, the base model is recommended for further implementation as the recovery factor is 38% with an estimate of 55.1 MMSTB. The platform will have 6 producers and 2 injectors. The quantity of oil produced is estimated at 15000 stbo/day which will require a separator that has the capacity of hold a liquid rate of about 20000 stb/day. The developmental wells are subsequently increased to achieve a water cut of 90-95% with more recoverable oil within the 15-year field life. This developmental plan is also cost effective as drilling more wells means more capital expenditure.


2021 ◽  
Author(s):  
Daniel Podsobinski ◽  
Roman Madatov ◽  
Bartlomiej Kawecki ◽  
Grzegorz Paliborek ◽  
Piotr Wójcik ◽  
...  

Abstract In Poland there are approximately 60 oil fields located in different geological structures. Most of these fields have been producing for several years to several dozen years, and now require redefining of the development plan by utilizing an improved oil recovery (IOR) or enhanced oil recovery (EOR) method to achieve a higher oil recovery factor. Here we present the redevelopment plan for the Polish Main Dolomite oil field, that aimed to optimize and maximize the oil recovery factor. Considering all available geological and reservoir data, both a static and dynamic model were built and calibrated for three separate reservoirs connected to the same production facility. Then the comprehensive study was performed where different development scenarios was considered and tested using reservoir numerical simulation. The proposed redevelopment scenarios included excessive gas reinjection to the main reservoir, additional high-nitrogen (N2) gas injection from a nearby gas reservoir (87% of N2), carbon dioxide (CO2) injection, water injection, polymer injection, water-alternating-gas (WAG), well stimulation, and a combination of these methods. Development plans assumes also drilling new injection and production wells and converting existing producers to gas or water injectors. The key component in development scenarios was to arrest the pressure decline from the main field and decrease the gas/oil ratio (GOR). An additional challenge was to implement in the simulation model all key assumptions behind various development scenarios, while also taking into account specific facility constraints and simultaneously handling separate reservoirs that are connected to the same facility, and hence affecting each other. From numerous scenarios, the scenario that requires the least number of new wells was selected and further optimized. It considers the drilling of only one new producer, one new water injector, and conversion of some currently producing wells to gas and water injectors. The location of the proposed well and the amount of injection fluids was optimized to achieve the highest oil recovery factor and to postpone gas and water breakthrough as much as possible. The optimized case that assumes low investments is expected to improve incremental oil production by 90% over No Further Actions Scenario. However, the study suggests the potential of more than tripling incremental oil production under a scenario with considerably higher expenditures. The improved case assumes drilling one more producer, four new water injectors, and injection of three times more water. The presented field optimization example highlights that in many existing Polish oil fields there is still a potential to reach higher oil recovery without considerable expenditures. However, to obtain more significant oil recovery improvement, higher capital expenditure is necessary. To facilitate the selection of the best development scenario, a detailed economic and risk analysis needs to be conducted.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yiming Wu ◽  
Kun Yao ◽  
Yan Liu ◽  
Xiangyun Li ◽  
Mimi Wu ◽  
...  

A condensate gas reservoir is an important special oil and gas reservoir between oil reservoir and natural gas reservoir. Gas injection production is the most commonly used development method for this type of gas reservoir, but serious retrograde condensation usually occurs in the later stages of development. To improve the recovery efficiency of condensate oil in the middle and late stages of production of a condensate gas reservoir, a gas injection parameter optimization test study was carried out, taking the Yaha gas condensate reservoir in China as an example. On the premise that the physical experimental model and key parameters met the actual conditions of the formation, the injection method, injection medium, injection-production ratio, and other parameters of the condensate gas reservoir were studied. Research on the injection method showed that the top injection method had a lower gas-oil ratio and higher condensate oil recovery. The study of injection medium showed that the production effect of carbon dioxide (CO2) injection was the best injection medium, and the maximum recovery rate of condensate oil was 95.11%. The injection-production ratio study showed that the injection-production ratio was approximately inversely proportional to the recovery factor of condensate gas and approximately proportional to the recovery factor of condensate oil. When the injection-production ratio was 1 : 1, the maximum recovery rate of condensate oil was 83.31%. In summary, in the later stage of gas injection development of the Yaha condensate gas reservoir, it was recommended to choose the development plan of CO2 injection at the top position with an injection-production ratio of 1 : 1. This research can not only provide guidance for the later formulation of gas injection plans for Yaha condensate gas reservoirs but also lay a foundation for the research of gas injection migration characteristics of other condensate gas reservoirs.


2018 ◽  
Vol 6 (1) ◽  
pp. SB51-SB64 ◽  
Author(s):  
Domagoj Vulin ◽  
Bruno Saftić ◽  
Marija Macenić

Total carbon dioxide ([Formula: see text]) storage capacities are estimated in numerous studies, but there is a lack of research of possible injection rates at a particular site. We have performed compositional simulation with permeability variation (based on log-normal distribution parameters of the measured data from similar formations in an oil field above the aquifer) to include changes of aqueous and gaseous phase properties (composition, viscosities, density), and heterogeneity of a regional [Formula: see text] storage site. We have performed sensitivity tests on vertical permeability multiplier, different grid block sizes, diffusivity, and capillary pressures to detect the key parameters for injectivity and storage efficiency. In this way, we modeled heterogeneity of a [Formula: see text] storage site and the possible injection rate in this detail for the first time. Based on pressure analysis in simulation cases, we found that it will be hard to avoid fracturing the near-wellbore zone, but fracturing these zones might also increase the injectivity, and this can still be done without damaging the cap rock. Simulation results indicated that maximum pressure will occur in zones above wellbores at the short period after the injection, and almost no change of average pressure in the regional aquifer will be noticeable, which leads to the conclusion that the total (theoretical) storage capacity is not the key issue for [Formula: see text] storage in aquifers and that injectivity for the storage site (expressed as the rate) should be the key parameter for selecting the pilots for [Formula: see text] storage.


Author(s):  
T. Cheng ◽  
Y.B. Dang ◽  
F.T. Hu ◽  
Z.W. Jia ◽  
Z. Niu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2021 ◽  
Vol 40 (11) ◽  
pp. 823-830
Author(s):  
Nikita Bondarenko ◽  
Sherilyn Williams-Stroud ◽  
Jared Freiburg ◽  
Roman Makhnenko

Carbon sequestration activities are increasing in a global effort to mitigate the effects of greenhouse gas emissions on the climate. Injection of wastewater and oil-field fluids is known to induce seismic activity. This makes it important to understand how that risk relates to CO2 injection. Injection of supercritical CO2 into the Cambrian Mt. Simon sandstone in Illinois Basin induced microseismicity that was observed below the reservoir, primarily in the Precambrian crystalline basement. Geomechanical and flow properties of rock samples from the involved formations were measured in the laboratory and compared with geophysical log data and petrographic analysis. The controlling factors for induced microseismicity in the basement seem to be the hydraulic connection between the reservoir and basement rock and reactivation of pre-existing faults or fractures in the basement. Additionally, the presence of a laterally continuous low-permeability layer between reservoir and basement may have prevented downward migration of pore pressure and reactivation of critically stressed planes of weakness in the basement. Results of the geomechanical characterization of this intermediate layer indicate that it may act as an effective barrier for fluid penetration into the basement and that induced microseismicity is likely to be controlled by the pre-existing system of faults. This is because the intact material is not expected to fail under the reservoir stress conditions.


2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


Sign in / Sign up

Export Citation Format

Share Document