scholarly journals The reaggregation of normal granulosa-cumulus cells and mouse oocytes with polycystic ovarian syndrome in vitro: An experimental study

Author(s):  
Amaneh Moradi ◽  
Fatemeh Ghasemian ◽  
Farhad Mashayekhi

Background: The dialogue between oocytes and their surrounding cells plays a major role in the progress of oocyte meiosis and their developmental potential. Objective: This study aimed to evaluate the effect of co-culture of normal granulosa-cumulus cells (GCCs) with oocytes from polycystic ovarian syndrome (PCOS) mice. Materials and Methods: Normal GCCs were collected from 10 virgin adult Naval Medical Research Institute female mice (30-35 gr, 7-8 wk old), and were cultured in an alpha-minimum essential medium supplemented with 5% fetal calf serum for 24-48 hr (1×106 cells/well). Then, germinal-vesicle oocytes from PCOS mice were cultured in the presence of cultured normal GCCs (experimental group) and without GCCs (control group). The maturation rate and quality of the PCOS oocytes were examined by evaluating TFAM and Cx43 gene expression (real-time PCR) and the connection among PCOS oocytes and normal GCCs after 24 hr of culture. Results: The co-culture of normal GCCs and PCOS oocytes in the experimental group led to the formation of a complex called a PCOS oocyte-normal GCCs complex. The maturation rate of these complexes was significantly increased compared to that of the control group (p ≤ 0.001). A significant difference was also found in the expression of Cx43 (p ≤ 0.001) and TFAM (p < 0.05) genes in the experimental group compared with the control group. The connection between PCOS oocytes and normal GCCs was observed in the scanning electron microscope images. Conclusion: Co-culture with normal GCCs improves the capacity of PCOS oocytes to enter meiosis, which may result in the promotion of assisted reproduction techniques. Key words: PCOS, Co-culture, Granulosa-cumulus cells, IVM, Cx43.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 2-3
Author(s):  
Theisy P Acosta Pérez

Abstract α-tocopherol is known to be a powerful antioxidant, in this regard, it was added to bovine oocyte in vitro maturation media to evaluate its effect on oocyte maturation. Oocytes (n = 624) aspirated from ovaries of slaughtered cows were classified by quality and divided in four categories according to cytoplasm appearance and cumulus cells layers. Oocytes were washed in TCM-199 supplemented with fetal bovine serum (FBS) and FSH, then distributed in maturation media (TCM-199 supplemented with FBS, FSH and gentamicin). Three experimental groups of α-tocopherol (50, 100 and 200 mM) and a control group without α-tocopherol were used. Maturation was carried 22 h at 38.5°C in a 5% CO2 atmosphere. Oocytes were examined to determine cumulus expansion as categorical data (expansion or no expansion), as well as cumulus expansion Index (CEI). For CEI determination oocytes were graded 0 to 4, being 0 those with null expansion and 4 those with a noticeable cell expansion, then the number of oocytes were multiplied by the grade given and a sum of the totals was obtained, the new total was divided by the total of oocytes in the group and the result obtained corresponded to the CEI of the group. Results were analyzed with Chi Square test (for maturation rates) and an ANOVA (for the CEI) using the SAS system, data are presented as mean ± standard error. There was no statistical difference between control and α-tocopherol groups (P &gt;0.05). Numerically, the control group showed a higher maturation rate (100%) and obtained a higher CEI (2.44±0.20), followed by the 50 mM group (98.16%; 2.39±0.13), the groups 200 mM (97.40%; 2.00±0.14) and 100 mM (96.25%; 2.06±0.24) were the lowest. The addition of the minimum concentration (50 mM) of α-tocopherol to the maturation media could improve maturation rates without exposing oocytes to toxic effects.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


2005 ◽  
Vol 17 (2) ◽  
pp. 190
Author(s):  
W.C. Chang ◽  
J. Xu ◽  
S. Jiang ◽  
X.C. Tian ◽  
X. Yang ◽  
...  

The aim of this experiment was to determine the effect of the sucrose concentration (0 to 0.33 M) in the dilution medium on the viability, fertilizability, and development of vitrified bovine oocytes. Bovine oocyte-cumulus complexes were collected from slaughterhouse ovaries and in vitro-matured as reported previously. After 24-h maturation in TCM199-based medium under 5% CO2 humidified air at 39°C, these were exposed to hyaluronidase and carefully pipetted to remove all except the 3–5 innermost layers of cumulus. Oocytes were put into the pre-equilibration medium for 3 min and then into vitrification solution containing HEPES-buffered TCM199 supplemented with 20% FBS, ethylene glycol, and dimethylsulphoxide for 25–30 s; they were then vitrified by modified solid surface vitrification (Dinnyes et al. 2000 Biol. Reprod. 63, 513–518).The oocytes were warmed at 39°C by placing them in holding medium with 0, 0.08, 0.17, 0.25, or 0.33 M sucrose. Non-vitrified oocytes were used as controls. Oocytes were inseminated 30 min after warming, and the presumptive zygotes were cultured in CR1-aa medium supplemented with 6 mg/mL BSA at 39°C in a humidified atmosphere of 5% CO2, 5% O2, and 90% N2 for eight days. Data were analyzed by one-way ANOVA. As shown in Table 1, there was no significant difference in survival rate (P > 0.05) of the vitrified oocytes that were placed in dilution solution containing 0.17, 0.25, or 0.33 M sucrose and the non-treated controls. On Day 2 (fertilized on Day 0), cleavage to the 8-cell stage was similar for the 0.17, 0.25, and 0.33 M dilution groups, but the rates for all three were significantly lower (P < 0.05) than for the control group. The blastocyst rate on Day 8 was significantly higher for the 0.25 M group than for any other experimental group but still significantly lower than for the control. In conclusion, this study suggests that with this vitrification/warming procedure the optimum concentration of sucrose in the dilution solution is 0.25 M. Table 1. Oocyte survival after vitrification/warming and subsequent embryo development The authors would like to thank Ms Colleen Shaffer for the preparation of bovine oocytes.


2006 ◽  
Vol 18 (2) ◽  
pp. 270
Author(s):  
C. Hanna ◽  
C. Long ◽  
M. Westhusin ◽  
D. Kraemer

The objectives of this study were to determine whether the percentage of canine oocytes that resume meiosis during in vitro maturation could be increased by either increasing culture duration or by removing approximately one-half of the cumulus cells 24 h after oocytes were placed into culture. Canine female reproductive tracts were collected from a local clinic and ovaries were minced in warm TL-HEPES. Oocytes with a consistently dark ooplasm and at least two layers of cumulus cells were selected, cultured in a basic canine oocyte in vitro maturation medium consisting of TCM-199 with Earl's salts, 2.92 mM Ca-lactate, 20 mM pyruvic acid, 4.43 mM HEPES, 10% fetal calf serum, 1% Penicillin/Streptomycin (GibcoBRL, Grand Island, NY, USA), and 5 μg/mL porcine somatotropin, and incubated at 38.5°C in 5% CO2 in humidified air. Treatment groups were randomly assigned and oocytes were cultured for 60, 84, or 132 h (Basic). From each of these groups, one-half of the oocytes were pipetted through a fine bore pipette to partially remove the cumulus cells 24 h after the start of culture (Basic–1/2). At the end of culture, all oocytes were denuded and the nuclear status was observed with Hoechst 33342 under ultraviolet fluorescence. All data were analyzed by ANOVA with P < 0.05. Since the canine oocyte is ovulated at the germinal vesicle (GV) stage of meiosis and requires up to five days to mature in the oviduct, it was hypothesized that an increased culture time would allow for more oocytes to undergo nuclear maturation to metaphase II (MII). It was also hypothesized that partial removal of cumulus cells would decrease the cumulus cell component in the ooplasm that sustains meiotic arrest, allowing for more oocytes to resume meiosis (RM = germinal vesicle breakdown to MII). Results within each treatment group indicate that there is no significant difference between culture duration and the percent of oocytes that mature to MII. Additionally, there was no significance in the percent of oocytes that resumed meiosis after partial cumulus cell removal. Taken together, these data suggest that neither treatment is effective in canine in vitro maturation systems, given the current maturation culture conditions. Table 1. Nuclear status* of oocytes for three time periods with or without partial cumulus cell removal


2008 ◽  
Vol 20 (1) ◽  
pp. 113
Author(s):  
H. M. Zhou ◽  
B. S. Li ◽  
L. J. Zhang

The objective of this study was to investigate the reprogramming potential of equine somatic cell donor nuclei in either bovine or ovine recipient oocyte cytoplasmic environments. Heterogeneous embryos were reconstructed by somatic cell nuclear transfer (NT). The percentage of fusion and developmental competence, assessed by rates of cleavage and morula and blastocyst formation, were determined. Skin fibroblast cells, obtained from the ear of an adult female Mongolian horse, were dissociated using 0.25% trypsin and cultured in vitro in a humidified atmosphere of 5% CO2 in air at 37°C. Donor somatic cells were serum-starved before NT and used between passages 4 and 6. Bovine and ovine oocytes derived from slaughterhouse ovaries were matured in vitro for 17–19 and 22–24 h, respectively, in a humidified atmosphere of 5% CO2 in air at 38.5°C, before they were enucleated and used as recipient cytoplasts. The fibroblasts were injected under the zona pellucida of the cytoplasts and electrically fused by 2 DC electrical pulses of 1.58 kV cm–1 for 10 μs, with an interval of 0.13 s. The reconstructed embryos were then activated with 5 μm ionomycin in H-M199 for 5 min and then in 2 mm 6-DMAP for 4 h. The equine-bovine and equine-ovine reconstructed embryos were co-cultured, respectively, with bovine and ovine cumulus cells in synthetic oviduct fluid supplemented with amino acids (SOFaa) and 10% fetal calf serum (FCS) for 168 h. The data were analyzed with ANOVA and differences among the groups were evaluated with t-test. The results of the percentages of fusion, cleavage, and development to morula (8 to 64 cells) and blastocyst stages of equine-bovine and equine-ovine heterogeneous embryos are shown in Table 1. This study demonstrates that heterogeneous embryos can undergo early embryonic divisions and that reprogramming of equine fibroblast nuclei can be initiated in foreign cytoplasts. It appears that embryos reconstructed with equine somatic nuclei and ovine cytoplasts have a higher developmental potential than those using bovine cytoplasts. Table 1. Developmental competence of equine-bovine and equine-ovine reconstructed embryos


2015 ◽  
Vol 27 (1) ◽  
pp. 236
Author(s):  
M. Kafi ◽  
M. R. Divar ◽  
S. Gharib-Zadeh

The cause of repeat breeding syndrome is often difficult to explain in dairy heifers with no clinical abnormalities. The aim of the present experiment was to determine the effect of follicular fluid obtained from the preovulatory follicle of repeat breeder heifers on maturation of bovine oocytes in vitro. Holstein virgin heifers either with normal fertility (VH, n = 5) or repeat breeder syndrome (RB, n = 5) were used in the present experiment. The RB heifers had a history of at least 5 unsuccessful consequent artificial breeding. The reason for using such RB heifers was to exclude the possibility of the presence of usual causes of infertility in heifers. Oestrus cycles of all heifers were synchronized using 2 injections of PGF2a 11 days apart. Six to 12 h after oestrus detection, clear follicular fluid samples from the ovulatory follicles were collected transrectally using a long fine-needle covered by a hard plastic tube. Follicular fluid samples were pooled, centrifuged, and frozen until used in the maturation medium. A total of 483 good or excellent quality bovine cumulus-oocytes complexes (COC) were obtained from 2 to 6 mm follicles in diameter from slaughterhouse ovaries and randomly allocated in 3 groups; in group 1 (control, n = 180), oocytes were cultured in TCM-199 supplemented with 10% heat-treated fetal calf serum and hormones (5 IU mL–1 of hCG plus 0.1 IU mL–1 of rFSH); in group 2 (n = 126), oocytes were cultured in TCM-199 supplemented with 10% filtered follicular fluid of VH without hormones; in group 3 (n = 177), oocytes were cultured in TCM-199 supplemented with 10% filtered follicular fluid of RB heifers without hormones. All oocytes were cultured for 24 h at 39°C in an atmosphere of 5% CO2 under 90% humidity. At the end of maturation, the degree of cumulus expansion was evaluated and scored under a stereomicroscope. Then, oocytes were mechanically denuded using 3% sodium citrate and repeated pipetting and were fixed in ethanol/acetic acid (3 : 1) for 24 h. The oocytes were subsequently stained with 1% aceto-orcein and evaluated for meiotic resumption. Proportions were statistically analysed using a Chi-squared test (significant at P < 0.05; SPSS program, 11.5). The percentages of fully expanded COC differed among groups (P < 0.001). The maturation rate (MII stage) was 83% (150/180) in oocytes that were cultured in the presence of FCS as the control group. However, a reduction in the maturation rate was observed when oocytes were cultured either in VH follicular fluid (71.4%, 90/126; P < 0.01) or RB follicular fluid (59.3%, 105/177; P < 0.001) compared to the control group. The percentages of matured oocytes were also different between VH and RB follicular fluid (71.4 v. 59.3%; P < 0.01, respectively). In conclusion, the quality of follicular fluid of the preovulatory follicles of repeat breeder heifers is lower than that of the virgin heifers with normal fertility. This may explain the cause of the low fertility in some repeat breeder Holstein heifers.


2014 ◽  
Vol 26 (1) ◽  
pp. 196
Author(s):  
K. R. L. Schwarz ◽  
R. C. Botigelli ◽  
F. C. Castro ◽  
M. R. Chiaratti ◽  
C. L. V. Leal

The sensitivity of IVP embryos to cryopreservation is often associated with lipid accumulation in the cytoplasm induced by the presence of fetal calf serum (FCS) during culture. Intracellular levels of cyclic (c)AMP and cGMP are involved in the regulation of lipolysis in adipocytes; high levels stimulate lipolysis whereas low levels lead to lipogenesis. Both nucleotides are present in bovine oocytes, together with the enzymes for their synthesis and degradation. The aim of this study was to analysis the effect of FCS on the cGMP pathway and the influence of cGMP on cytoplasmic lipids in bovine oocytes. In experiments 1 and 2, cumulus–oocyte complexes (COC) were cultured for 24 h in maturation medium with different proportions of FCS (2 and 10%) and a control group was matured with 0.4% BSA. After this period, transcripts for cGMP pathway were assessed by real-time PCR (GUCY1B3 and PDE5, cGMP synthesis and degradation enzymes, respectively; experiment 1) in oocytes and cumulus cells, and cGMP levels were measured in COC using commercial enzyme immunoassay kits (EIA; experiment 2). In experiments 3 and 4, COC were matured for 24 h with 0.4% BSA and different concentrations of the phosphodiesterase (PDE)5 inhibitor (0, 10–7, and 10–5 M sildenafil) to inhibit cGMP degradation and a control group was matured with 0.4% BSA. The nucleotide levels were measured in COC (experiment 3) and the oocytes were stained with Nile Red (1 μg mL–1) for evaluation of lipid content (experiment 4). Statistical analyses were performed by ANOVA followed by Tukey post hoc test using SAS software (SAS Institute Inc., Cary, NC, USA). Data for gene expression from 5 replicates and for cGMP measurements and lipid content from 3 replicates were log10-transformed into before analyses. The level of significance was 5%. The presence of FCS reduced GUCY1B3 expression in both cells and increased PDE5A in cumulus cells (P < 0.05). In experiment 2, the groups treated with 2 (0.64 fmol/COC) and 10% FCS (1.04 fmol/COC) showed decreased cGMP levels compared with control (9.46 fmol/COC; P < 0.05). In experiment 3, inhibition of PDE5A increased cGMP levels in the treated groups (36 and 56 fmol/COC for 10–7 and 10–5 M sildenafil, respectively) compared with control (9.5 fmol/COC; P < 0.05). Therefore, sildenafil showed inverse effects compared with FCS (experiment 2). In experiment 4, oocytes treated with 10–7 and 10–5 M sildenafil showed a reduced lipid content compared with controls (11.6 ± 9.4 v. 13.9 μm2 fluorescence intensity, respectively; P < 0.05). The results suggest that FCS in maturation medium affects the cGMP pathway, interfering with the transcription of genes that control its levels, which in turn results in nucleotide reduction. Inhibition of PDE5 increases cGMP levels and reduces the lipid content of oocytes, indicating that changes in this pathway caused by FCS may affect lipid metabolism of oocytes. More studies are underway to better understand this mechanism. The authors acknowledge FAPESP 2012/00170-0 for financial support.


Zygote ◽  
2020 ◽  
Vol 28 (6) ◽  
pp. 447-452
Author(s):  
Seungbum Hong ◽  
Binoy S. Vettical ◽  
Nisar Ahmad Wani

SummaryExperiments were conducted to study in vitro maturation of prepubertal goat oocytes and their developmental potential after chemical activation. In Experiment 1, cumulus–oocytes complexes collected from the ovaries of prepubertal goats slaughtered at a local abattoir were matured in vitro in TCM-199-based medium supplemented with 10 µg/ml luteinizing hormone (LH) (treatment 1) or 10 µg/ml LH + 0.1 mM l-cysteine (treatment 2). In Experiment 2, mature oocytes were activated with either 5 µM ionomycin or 7% ethanol. After 18 h, some oocytes were randomly fixed and stained to evaluate their chromatin status, while others were cultured in embryo culture medium to study their further development. In Experiment 3, oocytes activated with 5 µM ionomycin were cultured for 7 days in one of the four different culture media [Charles Rosenkrans medium (CR-1), TCM-199, potassium simplex optimization medium (KSOM) and synthetic oviductal fluid (SOF)] to study their developmental potential. The maturation rate in control, treatment 1, and treatment 2 media did not differ from each other (P > 0.05). However, the lowest degeneration of oocytes was observed in treatment 3 (P < 0.05) when compared with the other two groups. The proportion of activated oocytes was higher, while non-activated oocytes were lower in ionomycin group when compared with the group activated with ethanol (P < 0.05). The proportions of oocytes cleaved were 65.7, 56.8, 61.0 and 54.4% in CR-1, TCM-199, KSOM and SOF medium, respectively, with no significant difference. However, further development of cleaved oocytes was better in KSOM followed by SOF.


2019 ◽  
Vol 21 (2) ◽  
pp. 158 ◽  
Author(s):  
Ersen Ertekin ◽  
Ozgür Deniz Turan ◽  
Ozum Tuncyurek

Aim: The aim of this study was to determine the contribution of Shear Wave Elastography (SWE) to the diagnosis of polycystic ovarian syndrome (PCOS).Material and methods: Thirty-seven patients with PCOS diagnosis criteria were included in the study. Sixteen volunteer patients without hormonal disturbances and with normal menstrual cycles were evaluated as the control group. Gray scale ultrasonography (US) and SWE measurements in both ovaries were performed by a single radiologist who was blinded to the clinical and laboratory results.Results: The SWE measurements in PCOS group were 8.4±2.0 kPafor the right ovary and 9.4±3.9 kPa for the left ovary and in the control group 7.8±4.1 for the right ovary and 8.6±2.5 kPa for the left ovary. There was no statistically significant difference between the PCOS and the control group according to the SWE results (for right ovary p=0.356, for left ovary p=0.258, and total ovary p=0.293).Conclusions: The ovarian morphology isstill the most reliable imaging finding in the diagnosis of PCOS, although it is controversial especially among adolescents. Although the diagnostic efficacy of SWE is demonstrated in a variety of soft tissue lesions, we did not find any significant contribution of SWE to the diagnosis PCOS. Therefore, the promising value of elastography is yet to be defined for the diagnosis of PCOS.


Author(s):  
Alan da Silva LIRA ◽  
Ricardo de Macedo CHAVES ◽  
Felipe de Jesus MORAES JUNIOR ◽  
Sergio Henrique COSTA JUNIOR ◽  
Brenda Karine Lima do AMARAL ◽  
...  

ABSTRACT We aimed to assess the effects of melatonin in the in vitro production of bovine embryos. Our experiment was conducted at the Laboratório de Reprodução Animal of the Universidade Estadual do Maranhão. The cumulus-oocyte complexes (COCs) were distributed among treatments at concentrations of 0, 10-1, 10-3 and 10-5 µMol/L melatonin. Our experiment was further divided into two: the first was to assess the effect of different concentrations of melatonin (treatments) on the maturation rate of COCs, and the second was to assess the effects of melatonin treatments on the in vitro production of bovine embryos. The results from the first experiment demonstrated no significant difference between the in vitro maturation rate of the cultivated COCs in treatments with melatonin. In the second experiment, however, melatonin treatments yielded statistically higher cleavage, morula and blastocyst rates in the 10-5 µM group (52.9%, 52.9%, and 35.3%, respectively), and lower rates in the 10-1 µM group (19.5%, 19.5% and 7.8%, respectively), compared to the others. The control group (no melatonin) and the 10-3 µM group showed similar results. We concluded that supplementation of melatonin in the in vitro maturation medium resulted in no improvement in the oocyte maturation rate, but in the in vitro production of embryos at different concentrations, the 10-5 µM group displayed better results, but with no improvement in the variables (P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document