scholarly journals Segregation in Porous NiTi Made by SHS in Flow Reactor

2017 ◽  
Vol 2 (1) ◽  
pp. 168 ◽  
Author(s):  
Yu. Yasenchuk ◽  
N.V. Artyuhova ◽  
K.V. Almaeva ◽  
A.S. Garin ◽  
V.E Gunther

The research considers the contribution of gases to the surface formation during self-propagating high-temperature synthesis (SHS) of porous titanium nickelide based alloys. The structure of the obtained porous alloys was analyzed using the methods of secondary ion mass spectrometry (SIMS), optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanocrystalline intermetallic oxycarbonitrides of a complicated structure were found on the porous titanium nickelide surface. A dense double gradient layer was found under the outer loose deposits. It is concluded that the dense gradient layer of intermetallic oxycarbonitride provides chemical passivity of the investigated porous alloys. Loose surface deposits of intermetallic oxycarbonitrides ensure successful integration of the alloy into the biological tissue in case of implantation. 

2017 ◽  
Vol 2 (1) ◽  
pp. 80 ◽  
Author(s):  
Yu.F. Yasenchuk Yu. ◽  
N.V. Artyuhova ◽  
K.V. Almaeva ◽  
A.S. Garin ◽  
V.A. Novikov ◽  
...  

The surface layers and fracture surfaces of porous titanium nickelide obtained by self-propagating high temperature synthesis (SHS) in a flow reactor in an argon atmosphere are studied by SEM and energy dispersive analysis. It is alleged that primary pores 5–15 µ in size and the related granular layer are formed due to segregation and capillary force effect during peritectic crystallization of some porous alloy areas. Coarsening and deformation of pores, as well as migration and growth of granular layers, is caused by reaction gases. Carbon and oxygen impurities present in the reaction gases and the protective atmosphere penetrate into the melt film on the pore surface to form strong and corrosion-resistant nanostructured layers of intermetallic carbides, nitrides and oxides.


1997 ◽  
Vol 40 (1) ◽  
pp. 17-20
Author(s):  
A. A. Klopotov ◽  
N. V. Girsova ◽  
V. É. Gyunter ◽  
V. I. Itin

Author(s):  
В.В. Привезенцев ◽  
В.С. Куликаускас ◽  
В.А. Скуратов ◽  
О.С. Зилова ◽  
А.А. Бурмистров ◽  
...  

AbstractSingle-crystal n -Si(100) wafers are implanted with ^64Zn^+ ions with an energy of 50 keV and dose of 5 × 10^16 cm^–2. Then the samples are irradiated with ^132Xe^26+ ions with an energy of 167 MeV in the range of fluences from 1 × 10^12 to 5 × 10^14 cm^–2. The surface and cross section of the samples are visualized by scanning electron microscopy and transmission electron microscopy. The distribution of implanted Zn atoms is studied by time-of-flight secondary-ion mass spectrometry. After irradiation with Xe, surface pores and clusters consisting of a Zn–ZnO mixture are observed at the sample surface. In the amorphized subsurface Si layer, zinc and zinc-oxide phases are detected. After irradiation with Xe with a fluence of 5 × 10^14 cm^–2, no zinc or zinc-oxide clusters are detected in the samples by the methods used in the study.


2000 ◽  
Vol 650 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

ABSTRACTBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


2005 ◽  
Vol 862 ◽  
Author(s):  
Charles W. Teplin ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
Robert Reedy ◽  
Bobby To ◽  
...  

AbstractWe have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm-3). The hydrogen concentration is found to increase substantially with film thickness from 5·1018 to 5·1019 cm-3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.


2011 ◽  
Vol 694 ◽  
pp. 408-412
Author(s):  
Lai Ping Zhang ◽  
Ji Lin Wang ◽  
Guo Wei Zhao ◽  
Zhan Hui Zhang ◽  
Fang Zhang ◽  
...  

Four types of boron nitride (BN) nanotubes are selectively synthesized by annealing porous precursor in flowing NH3 and NH3/H2 atmosphere at temperature ranging from 1000 to 1200°C in a vertical furnace. The as-synthesized BN nanotubes, including cylinder, wave, bamboo and bubble-chain, are characterized by scanning and transmission electron microscopy. Selectivity of BN nanotubes is estimated as approximately 80 to 95%. The porous precursor B31Fe17(MgO)27 prepared by self-propagation high-temperature synthesis (SHS) method plays a key role in controllable synthesis of the as-grown BN nanotubes. The chemical reaction and annealing mechanism are also discussed.


1995 ◽  
Vol 33 (1-2) ◽  
pp. 82-84
Author(s):  
S. M. Solonin ◽  
I. F. Martynova ◽  
V. V. Semida ◽  
N. V. Goncharuk

Sign in / Sign up

Export Citation Format

Share Document