scholarly journals Red Mud as an Additional Source of Titanium Raw Materials

2017 ◽  
Vol 2 (2) ◽  
pp. 150 ◽  
Author(s):  
A.A. Shoppert ◽  
I.V. Loginova

<p>In this study the extraction of titanium from bauxite residue (red mud) with 2 step acid leaching was proposed. In the first step red mud was leached with diluted hydrochloric acid under stirring to remove the soluble Ca, Na, Al, Si and K at 25 <sup>0</sup>C and pH=3 for 1 hour. The content of iron and titanium in the solid residue increased to 57.7% and 6.4%, respectively. The factors influencing sulfuric acid leaching of the solid residue in the second stage were examined by factorial design. The optimal iron and titanium extraction efficiency was obtained after leaching at 50 oC and L:S ration 20:1 for 90 min when 80 g/L sulfuric acid was used. The titanium oxide content in the concentrate obtained under the optimum conditions amounted to 46.7%. The maximum recovery of titanium in the sulfuric acid solution has not exceeded 6%.</p>

2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 32-40
Author(s):  
Eko Sulistiyono ◽  
Murni Handayani ◽  
Agus Budi Prasetyo ◽  
Januar Irawan ◽  
Eni Febriana ◽  
...  

Indonesia has very abundant reserves of silica, but progressive studies on the deposition of this material are very few, resulting in limited applications of silica. This work refers to the purification of silica from quartz sand originated from Sukabumi, Indonesia to obtain high-purity silica, which can be applied as important raw materials for special purposes. The aim of our research is to improve low-grade silica from quartz sand by removing impurities, especially aluminum and iron removal, using sulfuric acid leaching. In order to achieve the aim, the effect of reaction time and sulfuric acid concentration on the leaching process was investigated. The effectiveness of sulfuric acid for the impurities removal was observed. The chemical composition of the samples before and after leaching was studied using X-ray fluorescence. The mineralogical analysis of the starting materials and the products was conducted using X-ray diffraction. Microstructure analysis was performed using a scanning electron microscope, and EDS test was used to show the element composition at different points. The experimental results show that the optimum condition of the leaching process occurs at a reaction time of 5 hours with a sulfuric acid concentration of 10 N. The silica levels increase from 93.702 % to 96.438 %. Aluminum and iron impurities reduced from 4.691 % to 2.712 % and from 0.641 % to 0.094 %, respectively. At this optimum point, sulfuric acid is very effective to remove aluminum and iron impurities up to 42 % and 85 %, respectively. The results of this research can be a very significant opportunity to increase the value added of quartz sand from Sukabumi, which can enhance the quality of low-grade silica to provide better raw materials for glass industries.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maciej Jabłoński ◽  
Krzysztof Lubkowski ◽  
Sandra Tylutka ◽  
Andrzej Ściążko

Abstract The paper presents results of thermokinetic investigation of the hazard-type reaction of Norwegian and Australian ilmenite ores with sulfuric acid, modified by the addition of elemental sulfur, to increase the process safety in industrial conditions. In the reactions of both ilmenite ores the addition of sulfur caused a reduction of the thermal power generated in the reaction and a decrease in the value of the thermokinetic parameter ΔTmax/Δτ for almost the whole range of initial concentrations of sulfuric acid. It was also found that the addition of sulfur to the reaction did not negatively affect the degree of ilmenite leaching. The interpretation of the obtained thermokinetic curves allowed to determine safe process conditions for both types of titanium raw materials.


1992 ◽  
Vol 39 (4) ◽  
pp. 135-142
Author(s):  
Toshihiro KASAI ◽  
Tadato MIZOTA ◽  
Katsuyuki TAKAHASHI

2020 ◽  
pp. 56-63
Author(s):  
I. N. Pyagay ◽  
◽  
E. A. Kremcheev ◽  
L. A. Pasechnik ◽  
S. P. Yatsenko ◽  
...  

A prerequisite for commercial production of rare metals is a continuous effort given to developing knowledge-intensive recovery and refining techniques. Commonly known natural raw materials and conventional processing techniques, which are based on initial acid activation and recovery of minerals, as well as selective recovery of the target component (i.e. by sorption and extraction) cannot always ensure sufficient productivity or cost-effectiveness. This paper considers certain aspects of continued research in this area, which would require novel techniques. Such techniques should be based on new approaches allowing for the use of alternative raw materials to produce valuable rare metals on a cost-effective basis. It is demonstrated that red mud, i.e. waste material generated by bauxite industry and rich in scandium and other rare metals, can serve as such alternative source material. The paper describes the results of a study that looked at finding an optimum carbonization process for red mud that would ensure a consistent and predictable complexing process with regard to certain components. The paper also examines the environment in which soluble carbonate complexes can be stabilized and concentrated in the pregnant solution before the primary scandium-bearing concentrate can be recovered. The authors identified target parameters that determine enhanced filtration properties of carbonized slurry to ensure complete separation of the pregnant solution from the dehydrated (to the residual moisture content of 18%) carbonized residue. The paper highlights some positive factors of the carbonization process which enable a comprehensive utilization of alumina production waste. They include a long-term sequestration of carbon dioxide in the air and modified physical and chemical properties of red muds. This makes carbonized muds more compactable and thus more suitable for transportation and minimizes waste disposal hazards. The experimental research was carried out in conformance with the governmental assignments of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences and Saint-Petersburg Mining University.


Author(s):  
I. D. Kashcheev ◽  
K. G. Zemlyanoy ◽  
A. V. Doronin

This article is devoted to the integrated use of technogenic and natural aluminous raw materials in order to extract valuable components while solving environmental problems. The analysis of the granulation process of kaolin in the Ural region with the addition of an aqueous solution of sulfuric acid and subsequent firing of granules is carried out. Sulfuric acid leaching of kaolin-containing raw materials at various acid concentrations and the duration of the precipitate was considered. The obtained aluminum hydroxide powders were certified.


2012 ◽  
Vol 151 ◽  
pp. 355-359 ◽  
Author(s):  
Rong Rong Lu ◽  
Yi He Zhang ◽  
Feng Shan Zhou ◽  
Xin Ke Wang

Adopting Bayer red mud as raw material, researching five acid leaching of alumina and iron oxide methods, hydrochloric acid leaching, sulfuric acid leaching, mixed acid leaching and two methods of classification acid leaching, affecting on leaching ratio of Al and Fe in red mud. All the five acid leaching experiments have a good effect on the leaching ratios of alumina and iron oxide. The highest leaching ratios of alumina and iron oxide are 90.1% and 99.0% when the volume of hydrochloric acid and sulfuric acid are 25mL in the mixed acid leaching. Finally, obtain better condition of preparing flocculants solution for water treatment by leaching Fe and Al in red mud.


1994 ◽  
Vol 110 (12) ◽  
pp. 987-991 ◽  
Author(s):  
Toshihiro KASAI ◽  
Tadato MIZOTA ◽  
Katsuyuki TAKAHASHI

2019 ◽  
Vol 298 ◽  
pp. 116-120
Author(s):  
Aleksandr Bulaev ◽  
Vitaliy Melamud ◽  
Anna Boduen

The goal of the present work was to develop hydrometallurgical approaches based on acid leaching for selective extraction of base metals from the sample of old flotation tailings as well as obtaining solution, which can be used for leaching of substandard copper-zinc concentrate. Old flotation tailings contained 23.2% of iron, 0.36% of copper, and 0.23% of zinc. Copper-zinc concentrate contained 23.8% of iron, 16% of copper, and 5.3% of zinc. Agitation leaching of old flotation tailings with distilled water and sulfuric acid solutions (of 0.5 to 10% H2SO4) for 3 h at pulp density of 20% made it possible to extract of 26 to 34% and of 58 to 70% of copper and zinc, respectively. Concentrations of copper and zinc in the pregnant solutions were of 0.19 to 0.25 g/L and of 0.27 to 0.32 g/L, respectively. The increase in H2SO4 concentration up to 10% did not lead to significant increase in base metals extraction but led to significant increase in iron ions concentration in the pregnant solutions. Pregnant solution obtained during the leaching with water contained less than 1 g/L of iron ions, while that obtained during the leaching with 10% sulfuric acid contained about 9 g/L of iron ions. Therefore, two-stage acid leaching with water and 10% sulfuric acid was proposed for selective extraction of non-ferrous metals in the first stage and obtaining of ferric iron solution in the second stage. Two-stage leaching at pulp density of 40% with water made it possible to extract 31 and 64% of copper and zinc, respectively. It was shown, that second stage did not allow to increase non-ferrous metals extraction but made it possible to obtain solution containing 11g/L of ferric iron. This pregnant solution was used for oxidative leaching of copper-zinc concentrate. Leaching at 80°C made it possible to extract 13 and 48% of copper and zinc, respectively.


Sign in / Sign up

Export Citation Format

Share Document