scholarly journals Corrigendum notice: Protective Effect of Interval Exercise Training with Different Intensity and Alpha-Lipoic Acid Supplement on Nav1.3 Protein in Soleus Muscle of Diabetic Rats

Author(s):  
Seyedeh Fatemeh Fatemi ◽  
Seyed Abdollah Hashemvarzi ◽  
Amin Farzaneh Hesari

The article's abstract is not available.

Author(s):  
Seyedeh Fatemeh Fatemi ◽  
Seyed Abdollah Hashemvarzi ◽  
Amin Farzaneh Hesari

Introduction: Diabetes is a common metabolic disease, which leads to diabetic peripheral neuropathy. Peripheral neuron damage result in Nav1.3 elevations. Exercise training has beneficial role in diabetes management and peripheral neuropathy. Alpha lipoic acid (ALA) is a powerful biological antioxidant. However, the role of exercise training and ALA on Nav1.3 are not well understood. The aim of the present study was to investigate the effect of training with different intensity and Alpha lipoic acid supplement on soleus muscle Nav1.3 protein in rats with type 2 diabetes. Thirty-five male Wistar rats were randomly divided into seven groups: healthy control, diabetic, complementary diabetic, intensive exercise diabetic, moderate exercise diabetic, intensive exercise + supplemental diabetic, moderate exercise + complementary diabetic. Methods: In this experimental study, 35 male Wistar rats were randomly divided into seven groups: healthy control, diabetic (D), complementary (alpha lipoic acid) diabetic (ALA), diabetic high intensity training (HIT), diabetic moderate intensity training (MIT), diabetes HIT+ALA (ALA + HIT), diabetic MIT + ALA (ALA + MIT). Rats were diabetic by intra-peritoneal injection of STZ. The HIT and MIT protocols were performed five days a week for six weeks. HIIT included 10 bouts of four minutes (running at 85–90% of maximum speed) and MIT 13 bouts of four minutes (running at 65–70% of maximum speed). ALA was administered orally 20 mg/kg once a day by gavage. Nav1.3 protein levels were measured by immunohistochemistry method. Statistical operations were performed with SPSS version 16 software. One-way analysis of variance and Tukey were used to analyze the data. Results: The level of Nav1.3 increased significantly in diabetic group compared to the control (p≤0.0001). Moreover, HIT (p=0.0015), MIT p=0.0056), ALA+HIT (p≤0.0001) and ALA+MIT (p≤0.0001) decreased significantly Nav1.3 compared to the diabetic group. Conclusion: HIT and MIT can reduce the expression of NaV1.3 in soleus muscle in diabetic rats. ALA combined with exercise training can be more effective to reduce diabetic neuropathy.


Author(s):  
Cristiane Simões Coelho Britto Ramos ◽  
Vivian Alves Pereira da Silva ◽  
Lanna Beatriz Neves Silva Corrêa ◽  
Renato de Souza Abboud ◽  
Gilson Teles Boaventura ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
pp. 6-6 ◽  
Author(s):  
Parisa Jamor ◽  
Hassan Ahmadvand ◽  
Hesam Ashoory ◽  
Esmaeel Babaeenezhad

Background: Myeloperoxidase (MPO) is involved in the initiation, progression, and complications of atherosclerosis in diabetic patients. Objectives: In the current study, the impact of alpha-lipoic acid (LA), a natural antioxidant and a cofactor in the enzyme complexes on MPO, catalase (CAT) and glutathione peroxidase (GPx) activity, glutathione (GSH) and malondialdehyde (MDA) level, histopathology of kidney and expression of antioxidant enzymes, superoxide dismutase (SOD), GPx and CAT which are involved in the detoxification of reactive oxygen species (ROS), was evaluated in alloxan-induced diabetic rats. Materials and Methods: In this study, 30 male Rattus norvegicus rats randomly divided into three groups; control (C), non-treated diabetic (NTD), and LA-treated diabetics (LATD) was induced by alloxan monohydrate (100mg/kg; subcutaneous [SC]). Then treatment was performed with alphaLA (100 mg/kg intraperitoneal (i.p) daily to 6 weeks). Blood sample of animals collected to measure levels of MPO, CAT and GPx activity GSH and MDA. Kidney paraffin sections were prepared to estimate histological studies and to measure quantitative gene expression SOD, GPX and CAT in kidney. Results: Induction of diabetes led to a significant increase in MPO and MDA, reduced GSH level and GPx and CAT activities (P < 0.05). However, treatment with alpha-LA led to a significant elevation in GPx, CAT and GSH levels with a reduction in MPO activities and MDA levels (P < 0.05). Furthermore, the real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis results showed increased expressions of GPx, CAT and SOD enzyme in the treatment group compared with the diabetic control group. Histopathological lesions such as increased glomerular volume and lymphocyte infiltration were attenuated in the alpha-LA treated group. Conclusions: Our findings indicated that alpha-LA supplementation is effective in preventing complications induced by oxidative stress and atherosclerosis in diabetic rats.


Author(s):  
Hung Chang ◽  
Yu-Chien Kung ◽  
Shih-Chun Lee ◽  
Chung-Cheng Kao ◽  
Chia-Yu Chang ◽  
...  

2011 ◽  
Vol 7 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Nagaraja Haleagraha ◽  
Tan Jackie ◽  
Srikumar Chakravart ◽  
Anupama Bangra Kulur

2007 ◽  
Vol 31 (6) ◽  
pp. 488
Author(s):  
Ming Han Piao ◽  
Heung Yong Jin ◽  
Sun Kyung Song ◽  
Seun Mi Kang ◽  
So Young Kim ◽  
...  

2016 ◽  
Vol 44 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Dilek Özbeyli ◽  
Ayşe Cansu Berberoglu ◽  
Anıl Özen ◽  
Oktay Erkan ◽  
Yunus Başar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document